
ENABLING MOBILE AGENT TECHNOLOGY
FOR LEGACY NETWORK MANAGEMENT FRAMEWORKS

Paulo Simões, Rodrigo Reis, Luís M. Silva, Fernando Boavida

University of Coimbra, CISUC  Dep. Eng. Informática
Pólo II, Pinhal de Marrocos
P-3030 Coimbra, Portugal
psimoes@dei.uc.pt

Abstract. Network management is often considered as one of the application areas with greatest
potential for Mobile Agent (MA) technology. However, legacy applications and architectures
impose considerable inertia to the deployment of new solutions for network management. For
this reason, successful MA infrastructures will need flexible and effortless integration with
legacy management frameworks, like the widespread SNMP architecture.

This paper presents a set of solutions for the integration of SNMP into MA platforms, to support
access to SNMP management resources and to introduce MA-based management services that
can be reachable from legacy SNMP-capable applications. Such solutions were successfully
applied to the JAMES platform, a joint project from University of Coimbra, Siemens Portugal
and Siemens AG.

KEYWORDS: Network Management, Mobile Agents

1. INTRODUCTION
Network Management (NM) applications are usually based in one of two classic
protocols: SNMP [1], widely deployed in IP networks, and CMIP [2], for
telecommunication networks. These protocols are based on static, centralized and
non-scalable client/server architectures, where some central entity processes large
amounts of raw data gathered from each Network Element (NE).
The need for more scalable and flexible NM applications is leading to an intensive
quest for higher decentralization [3], with approaches like Management by
Delegation, CORBA, Web-based management, Intelligent Agents, Active
Networks and, more recently, Mobile Agent Technology (MAT) [4].
A Mobile Agent (MA) can be described as a small software program that is able to
migrate between hosting computers during its execution whilst maintaining across
the network. With this, the task processing can be dynamically distributed through
the network and placed closer to the management data. When compared to classic
client-server solutions, MAT reduces network traffic and increases scalability,
flexibility and robustness. MAT has been applied to several areas, like mobile
computing, e-commerce, Internet services, information search, and network
management [5].

There is now a considerable number of commercial MA platforms, like IBM’s
Aglets [6], Mitsubishi’s Concordia [7], General Magic’s Odyssey [8],
ObjectSpace’s Voyager [9], AdAstra’s JumpingBeans [10] and Grasshopper [11],
from IKV++. However, despite their interesting features, these platforms are too
much general-purpose and do not provide any special support for network
management.
For this reason, in the JAMES Project [12], we are developing from scratch a new
MA infrastructure that is being tuned and customized for the applications we have
in mind in the area of telecommunications and network management. Although the
discussion of the platform issues is beyond the scope of this paper, we can point
out some particular aspects like efficient code migration; fault-tolerance and
robustness; flexible code distribution and easy upgrading; mechanisms for
resource control; disconnected operation; portability; and interoperability with
existing management technologies, like SNMP [13].
This interoperability is crucial because legacy management technologies are the
link to provide the access to the management services available in the network.
MAT provides powerful programming metaphors that allow more efficient
solutions for distributed network management. However, one still has to rely on
the old management protocols in order to access the management resources in
heterogeneous environments, whenever direct Java interfaces are not available or
managed resources can not host mobile agents.
Additionally, MA-based solutions often need to coexist with and integrate into
legacy management systems. It is much more attractive and cost-effective to
develop and deploy management services using MAT if those services are usable
by installed legacy applications. This kind of interoperability, that can be achieved
by equipping MA-based services with SNMP or CORBA interfaces, paves the
way for incremental and integrated introduction of MAT to solve specific
problems for legacy management frameworks. Without it, MAs are limited to
specialized and poorly integrated management applications.
It is possible to use currently available general-purpose SNMP tools to achieve
some degree of interoperability between MAT and SNMP. However, there are
several reasons that recommend explicit support from the MA infrastructure, like
code mobility constraints, security constraints, limitations imposed on the
programming model of mobile agents, and resource usage control.
This paper proposes a framework to integrate SNMP into MA platforms. We
designed this framework specifically for the JAMES platform. However, since the
features it requires from the platform are relatively current, it can be easily be
ported to most of the other MA platforms.
The rest of this paper is organized as follows: Section 2 presents the JAMES
project, and Section 3 presents the integration of SNMP into the JAMES platform.
Section 4 discusses related work, and Section 5 concludes the paper.

2. THE JAMES PROJECT

The JAMES project explores the use of MAT in NM applications and consists of
two complementary lines of work. First, the development of a MA platform
specifically tuned according to the requirements those applications impose
(coordinated by University of Coimbra). Second, the development of software
products that exploit the technological and economical advantages of the platform
(coordinated by Siemens Portugal and Siemens AG). In the next Subsection, we
will present a brief description of the MA platform. An overview of the first
software products developed over the MA platform can be found in [14].

2.1 General Architecture of the JAMES Platform

The JAMES Platform provides the running environment for MA. In its present
version, there is a distinction between the software environment that runs in the
manager host (the JAMES Manager) and the software that executes in the other
network nodes (designated as JAMES Agency). Figure 1 shows a global overview
of the system.

Network
Element

Network
Element

Mobile Agent

Mobile Agent

JAMES
Agency

JAMES
Manager

JAMES
agent

JAMES
Code Server

Code Server

Application
Development

Platform
Management

Application
(static module)

Central Host

Figure 1  An Overview of the JAMES Platform

The JAMES Manager is responsible for the maintenance of the whole MA
infrastructure. Each NE runs a Java Virtual Machine and executes a JAMES
Agency that enables the execution of the mobile agents. The JAMES agents will
migrate through these machines of the network to access some data, execute some
tasks and to exchange information with other agents or other applications. There is
a mechanism of authentication in the JAMES Agencies to control the execution of
agents and to avoid the intrusion of non-authorized agents.

The applications consist of one or several MAs, and may additionally include
classic “static” programs coordinating the MA activities or providing a Graphical
User Interface to the end user. These static external modules communicate with
the agents using a Remote API, which also allows the remote management of the
platform.
MAs are developed in Java and use the JAMES API for the control of mobility.
After development, MAs must be registered and stored in the JAMES Code Server.
This server keeps a relation of all authorized MAs, as well as other security-
related information. For scalability reasons, future versions of the platform will
support multiple Code Servers and JAMES Managers.

The explanation of the inner details of the JAMES platform is outside the scope of
this paper. However, in the following list we summarize the key features of our
system:

� Portability of the applications, through the use of the Java language;
� High-performance in mobility through the use of caching and prefetching

techniques;
� Security mechanisms for code authentication;
� Resource control service to manage the use of underlying resources (CPU,

memory, disk and operating system resources);
� System monitoring and profiling of agent activity;
� Fault-Tolerance through the use of checkpointing and dynamic

reconfiguration of itinerary;
� Easy-to-use programming interface;
� Scalable execution of mobile agents, through the use of decentralized

protocols;
� Remote “on-the-fly” software upgrading;
� Interface with CORBA services;
� Support for Java-based technologies, like JavaSpaces [15];
� Distributed management and easy configuration of the network;
� Inter-agent communication (through Javaspaces);
� Multi-paradigms for agent execution (simple agent, migratory agents and

Master/Worker model);
� And integration of Java-based SNMP services into the platform.

2.2 The JAMES interoperability with SNMP

The JAMES platform provides support for SNMP in a bi-directional way (see
Figure 2), leading to three distinct services: interaction with local and remote
SNMP agents; access to MA-based services from legacy applications; and a
service allowing legacy applications to manage the JAMES platform itself.

Additionally, several key design goals were defined:
� Transparency: for obvious reasons, no interventions should be required on

the installed SNMP devices or applications;
� Minimal impact on the JAMES infrastructure: SNMP competes with the

Remote API as an interface for upper applications, and with several other
tools available to access management resources. Therefore, solutions where
the platform portability, complexity or functionality are affected by SNMP
support are not acceptable;

� Full support for agent mobility: meaning that SNMP support should not
restrict agent migration.

JAMES

Remote API

Heterogenous Management
Resources, local and remote:

SNMP agents, CORBA services,
direct Java interfaces, RPC,

databases, proprietary interfaces...

SNMP-based
Legacy

Applications

Applications
using the
Remote API

SNMP interface

SNMP
MIB

C
o

rb
a,

 R
M

I

S
N

M
P

Applications using MA services
and applications managing

JAMES

SNMP used by mobile agents to
access mgmt. services on NEs
not hosting mobile agents or

not providing direct Java
access to their services

SNMP as a front-end for
services provided to legacy

SNMP-based applications (by
mobile agents and by JAMES)

access to Mobile Agents + platform administration

S
N

M
P

O
th

er
 t

ec
h

n
.

JAMES platform for Mobile
Agents (distributed across the

network)

Figure 2  Bi-directional SNMP Interoperability

3. THE JAMES SNMP EXTENSIONS

The design of the SNMP Services of JAMES tries to accomplish with the defined
design goals (cf. Subsection 2.2) defining a modular framework where each
SNMP service can be installed and removed “on-the-fly”, according to the
circumstances (see Figure 3).
Most services consist themselves of mobile agents (the Service Agents) providing
services to common mobile agents through inter-agent communication. These
Service Agents, that can be located (or implicitly installed) using a general
directory service, are a lightweight solution that elegantly replaces more
sophisticated component-based technologies in the provision of several kinds of
services.

3.1 SNMP-Manager Service (SMS)
This service allows MAs to interact with SNMP Agents, using an SNMP manager-
API to query SNMP agents, and a Trap Listener that receives SNMP-Traps and
redirects them to the interested MAs. The basic functionality that is provided is
not too different from similar services found in classical management applications,
with concepts like sessions or contexts, request operations, asynchronous API,
event handlers and registration of Trap interest. However, there are two key
differences: the service location within the platform, based on the Service Agent
concept, and support for agent mobility  management operations using the SMS
do not affect the mobility of the MA, since all messages and events are
transparently forwarded to the MA current location.

JAMES Agency

SNMP Service for
platform management

SNMP services provided
by Mobile Agents

Legacy SNMP-based
Management Application

Legacy SNMP Agent
(local or remote)

SNMP CORBA, RMI...

Mobile
Agent

Mobile
Agent

SNMP-Manager
Service

Core of JAMES Extensible
SNMP-agent (AgentX)

SNMP

JAMES-aware
Management Application

JAMES Remote API
(CORBA, RMI,

Enterprise Java Beans)

JAMES Internal Administration API

"Service Agent"

"Common" Mobile Agent

Figure 3  High-Level Structure of JAMES SNMP Services

There are however many situations where such a complete support for agent
mobility is not necessary. Indeed, when Trap reception is not an issue, the Service
Agent based SMS might be replaced by a third-party “classic” SNMP stack
integrated in the Agent’s code, trading-off mobility support. This possible trade-
off is based on the assumption that mobile agents can delay migration whenever
completion of on-going SNMP transactions is crucial, since they implicitly control
their migration.
In this alternative (that we will designate as “Fat Agent Model”, opposed to the
previous described “Service Agent Model”) the SNMP manager-API is part of the
MA code, increasing its size. Mobility is affected by this increase, leading to
higher latency when migrating between agencies. Furthermore, MAs may loose
incoming asynchronous events (like SNMP traps or responses) when they migrate
to another agency. The programming model is also affected (agent migration has

to become aware of SNMP transactions) but still allows for some mobility. Figure
4 presents the main differences between both alternatives.
The JAMES platform also includes an SMS based on a “Fat Agent” Model, to be
used in situations where the more complete “Service Agent” model is not
necessary or recommended.
A third alternative, the location of the SMS in the core of the JAMES agency
(eventually designated as “Fat Agency Model”) was not considered because we
wanted to keep minimal impact on the platform. However, with more sophisticated
component-based technology this could become an interesting alternative.

SNMP
Agent

MIB

JAMES
Agency A

SNMP communication with local
or remote management resources

JAMES
Agency B

Fat Agent Model Service Agent Model

Service Agent
w/SNMP
Service

In
te

r-
ag

en
t

co
m

m

JAMES
Agency A

JAMES
Agency B

Fat Agent:
MA with

SNMP API

SNMP
Agent

MIB

SNMP
Agent

MIB

Agent
Migration

Agent
Migration

Figure 4  Service Agent Model vs. Fat Agent Model

3.2 SNMP Services for Legacy Applications
The interface with legacy SNMP Managers is provided by three different services,
also located on Service Agents (see Figure 5).
The Extensible SNMP-agent of JAMES consists of a core SNMP-agent with data
being supplied by the two underlying services. The present interface used to
register new variables or groups at the MIB-table, to issue Traps and to reply to
SNMP requests is proprietary, but the standard AgentX [16] protocol is currently
being adapted.
This SNMP-agent is independent of eventually installed native SNMP-agents.
Since native agents are either monolithic or based on a wide diversity of agent-
expansion mechanisms, like DPI [17] or AgentX, there was no truly portable and
non-intrusive integration method. This option of separating the SNMP services
provided by the JAMES mobile agents from the native SNMP-agents imposes
some constraints. For instance, it is not possible to extend a MIB of the native

SNMP-agent. However, this is not problematic since the most usual use of mobile
agents, in this context, will be the provision of new services and not a very
localized expansion of existing SNMP Services.
The JAMES SNMP-agent allows SNMP communication between legacy
applications and mobile agents, opening the way for easy installation of new
management services (corresponding to one or several mobile agents) available to
legacy SNMP-based network management systems. In such a scenario mobile
agents can be used to pre-process data gathered from existing management
services (thus offering higher level functionality), operate as SNMP proxies for
NEs using proprietary management interfaces, and can also install, dynamically,
new management services.

Extensible SNMP-agent of JAMES

Legacy SNMP
Management Station

SNMP Requests

SNMP Responses & Traps

SNMP Service for
Platform Management

SNMP Services Provided
by Mobile Agents

JAMES Internal Administration API

Registration &
deregistration of
SNMP Objects

Request for
Values, Actions

and Results
Request Trap

Generation

JAMES Remote API
(server side)

Platform Administration,
Mobile Agents Execution

Control,
Communication with

Mobile Agents

Management Application
using the Remote API

Remote API
(Corba, RMI...)

Mobile
Agent

MIB

Mobile
Agent

MIB

MIB

Figure 5  Services for Integration with Legacy Applications

Bellow the Extensible SNMP-agent, there is a mediator service where mobile
agents interested on providing an SNMP interface must register their SNMP
objects. Later on, SNMP requests from outside applications result in events passed
to mobile agents. These events will then trigger predefined management actions
resulting in SNMP responses. With the adaptation of AgentX, this mediator will
no longer be necessary, and interest mobile agents will communicate directly with
the extensible SNMP-agent.
The idea of using mobile, stationary or extensible agents for fast deployment of
management services available to legacy applications is not new. The use of
mobile agents and DPI to provide services to SNMP Managers was proposed by
[18]. In the field of Management by Delegation a similar approach, based on
extensible agents, was also considered [19], and the JDMK toolkit [20] offers a

complete set of tools to create and remotely install new management services
based on stationary services.
The JAMES SNMP agent also allows SNMP-based management of the JAMES
platform itself. Although a richer interface is available to dedicated applications
using the Remote API, a subset of the available management functions has been
“translated” into an SNMP MIB that provides monitoring, fault-management and
performance management. This is implemented using another “Service Agent”
(the Agency SNMP Management Service) that mediates the communication
between the SNMP-agent and the internal JAMES administration API. The
intention is not to use SNMP to fully administer JAMES but to provide a basic set
of SNMP-based management services.
For the moment, there are two separate security frameworks: one for the SNMP
interface, with the basic mechanisms of SNMPv1 and SNMPv2c, and another for
the Remote API, with finer granularity security policies (per-application and per-
agent) and stronger authentication mechanisms. The current SNMP agent of the
platform does not reflect this finer granularity by dynamically creating a matching
SNMP “view” for each JAMES application that uses the Remote API interface. For
this reason, we feel this area still requires further work.

3.3 Implementation Notes
The JAMES SNMP services were completely developed from scratch. However,
there are no strong technical reasons excluding the less costly extensive adaptation
of commercially available SNMP tools written in Java, like [21]. SNMPv1 and
SNMPv2c are currently supported and, for the moment, implementation of
SNMPv3 is not being considered.
The first version of these services used some basic inter-agent communication
schemes, and is now being ported to a more flexible scheme based on Sun
JavaSpaces. This work, as well as the already mentioned adaptation of AgentX,
should be complete within a few weeks.

3.4 Portability to other MA Platforms
Extending this framework to other MA platforms should be possible, since most of
them already include the main necessary features.
Porting the SNMP-Manager Service would simply require good asynchronous
inter-agent communication mechanisms and a basic directory service to locate the
corresponding Service Agents. For platforms already featuring full-fledged
component-based design, it could be interesting to substitute these Service Agents
by Service Components installable on the platform. The “Fat Agent Model” is
even less demanding, since the service requires no support from the platform.
The service that allows creation of SNMP services using MAs is also simple to
install using the same techniques of the SMS.

The service that allows to perform some platform management functions from
legacy applications is the most difficult to port, for two major reasons: first, most
MA platforms provide no mechanism like the Remote API and are rather based on
thigh user interfaces. For this reason, most of them do not have a well-defined
internal management API; secondly, even for the platforms that provide such an
API, it would obviously be necessary to create a new MIB structure reflecting
their own organization and security framework.

4. RELATED WORK
Unlike CORBA, supported by several platforms and with two on-going
standardization processes (MASIF [22] and FIPA [23]), SNMP is not explicitly
supported by any commercial implementation of MA. The few registered
experiences belong to the academic field, with several projects [24-26] mentioning
SNMP as an ad-hoc tool to access management services on network devices,
without concern about specific integration issues. There are, however, two MA
projects that, like JAMES, went further on the support (or usage) of SNMP.

The Astrolog project [27], that uses MAT to enhance the mobility of the network
operator, included internal monolithic SNMP-agents to represent/access local
information and to pass management data up to the remote controlling
applications. These SNMP-agents, however, were developed with a single
application in mind, lacking extensibility or flexibility.
The Perpetuum Mobile Procura Project [18,28] is the one that presents most
similarities with the work made on our project. It also addresses bi-directional
SNMP integration (managed resources and management applications), using DPI
[17] to indirectly access local SNMP agents and to extend these agents. However,
the use of an external DPI-capable SNMP agent affects the global portability of
the system.
The Java Dynamic Management Kit (JDMK) [20] also deserves to be mentioned,
since this commercial product from Sun Microsystems seems to be the most
complete and powerful toolkit for the development of management services. It is
based on a modular infrastructure that integrates several management protocols,
including SNMP, with mechanisms for easy management service extensibility.
JDMK shares several concepts with MAT, but it should be stressed out that JDMK
agents are not MAs, even if it is possible to dynamically install them on the
network devices using push/pull mechanisms.

5. CONCLUSIONS AND FUTURE WORK
In this paper we discussed the provision of explicit SNMP support for
management applications based on mobile agents. This kind of support is
important whenever SNMP is the only or the best available interface to access
management information. Another reason to provide SNMP support is the
possibility of using mobile agent technology to develop new management services

to be used by legacy management applications. Furthermore, SNMP can also be
used to manage the platform itself.
To the best of our knowledge our proposal presents the most comprehensive
approach in the integration of SNMP with Mobile Agent Technology. We use
mobile agents for accessing management services, we use SNMP to provide new
services to legacy management applications, and we can even use SNMP for the
management of the platform. None of the other platforms provides these facilities.
In addition to this extensive use of SNMP, the JAMES approach also provides
enhanced support for MA mobility and, through the use of the “Service Agent”
concept, presents minimal impact on complexity and performance of the platform.
We are currently conducting a comparison study between the Fat Agent Model
and the Service Agent Model, considering mobility support, performance and
scalability. We are also preparing an extensive performance study about the
introduction of MA-based SNMP services for legacy management applications.
Another area where additional work is necessary is security, in order to cope with
the already mentioned discrepancies between the security models of the Remote
API and the SNMP interface for platform management.

ACKNOWLEDGEMENTS
The JAMES project is partially supported by Agência de Inovação and was
accepted in the European Eureka Program (Σ!1921). Special thanks to Eduardo
Lourenço and Pedro Pereira, for the development of the AgentX services, and to
the rest of the project team.

REFERENCES
[1] M. Rose, "The Simple Book - An Introduction to Management of TCP/IP-based Internets,

2nd Edition", Prentice-Hall International Inc., 1994
[2] “ISO/IEC 9595: Information technology - Open Systems Interconnection - Common

management information Service definition”, International Organization for
Standardization, International Electrotechnical Commission, 1990

[3] G. Goldszmidt, Y. Yemini, “Decentralizing Control and Intelligence in Network
Management”, in Proceedings of the 4th ISINM, Santa Barbara, 1995

[4] J. Martin-Flatin, S. Znaty, “Annotated Typology of Distributed Network Management
Paradigms”, T/R SSC/1997/008, École Pol. Fédérale de Lausanne, 1997

[5] V. Pham, A.Karmouch. “Mobile Software Agents: An Overview”, IEEE Communications
Magazine, July 1998

[6] IBM Aglets Workbench, http://www.trl.ibm.co.jp/aglets/
[7] Mitsubishis’ Concordia, www.meitca.com/HSL/Projects/Concordia/
[8] General Magic Odyssey, http://www.genmagic.com/agents/
[9] Objectspace Voyager, http://www.objectspace.com/voyager/
[10] Jumping Beans, http://www.JumpingBeans.com/
[11] IKV++ Grasshopper, http://www.ikv.de/products/grasshopper/
[12] L. Silva, P. Simoes, G. Soares, P. Martins, V. Batista, C. Renato, L. Almeida, N. Stohr,

“JAMES: A Platform of Mobile Agents for the Management of Telecommunication
Networks”, in Proceedings of IATA’99, Stockholm, 1999

[13] P. Simoes, L. Silva, F. Boavida, “Integrating SNMP into a Mobile Agent Infrastructure”, in
Proceedings of DSOM’99, Zurich, 1999

[14] L. Silva, L. Almeida, “The Advantages of Using Mobile Agents in Software for
Telecommunications”, in Proceedings of ICCC’99, Tokyo, 1999

[15] JavaSpaces, http://java.sun.com/products/javaspaces
[16] M. Daniele, B Wijnen, D. Francisco, “Agent Extensibility (AgentX) Protocol Version 1”,

RFC 2257, 1998
[17] B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, G. Waters, “Simple Network Management

Protocol Distributed Protocol Interface Version 2.0”, RFC 1592, 1994
[18] G. Susilo, A. Bieszczad, B. Pagurek, “Infrastructure for Advanced Network Management

based on Mobile Code”, in Proceedings of NOMS'98, New Orleans, 1998
[19] G. Goldszmidt, “Distributed Management by Delegation”, PhD thesis, pp. 84-87,

Columbia University, 1996
[20] Java Dynamic Management Kit, http//www.sun.com/software/java-dynamic
[21] AdventNet SNMP, www.adventnet.com/products/snmpbeans
[22] “Mobile Agent System Interoperability Facilities Specification”, OMG TC Document

orbos/97-10-05, 1998
[23] Foundation for Intelligent Physical Agents, http://www.fipa.org
[24] J. Nicklish, J. Quittek, A. Kind, S. Arao, “INCA: an Agent-based Network Control

Architecture”, in Proceedings of IATA’98, Paris, July 1998
[25] M. Zapf, K. Herrmann und K. Geihs, “Decentralized SNMP Management with Mobile

Agents”, in Proceedings of the IM'99, Boston/USA, 1999
[26] A. Puliafito, O. Tomarchio, “Advanced Network Management Functionalities thorugh the

use of Mobile Software Agents”, in Proceedings of IATA’99, Stockholm, 1999
[27] A. Sahai, C. Morin, “Enabling a Mobile Network manager (MNM) Through Mobile

Agents”, in Proceedings of Mobile Agents’98, Stuttgart, Germany, 1998
[28] Bieszczad, A., “Advanced Network Management in the Network Management Perpetuum

Mobile Procura Project”, Technical Report SCE-97-07, Systems and Computer
Engineering, Carleton University, 1997

