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ABSTRACT The performance evaluation of imputation algorithms often involves the generation of
missing values. Missing values can be inserted in only one feature (univariate configuration) or in several
features (multivariate configuration), at different percentages (missing rates) and according to distinct
missing mechanisms, namely Missing Completely At Random, Missing At Random and Missing Not
At Random. Since the missing data generation process defines the basis for the imputation experiments
(configuration, missing rate, missing mechanism) it is essential that it is appropriately applied; otherwise,
conclusions derived from ill-defined setups may be invalid. The goal of this work is to review the different
approaches to synthetic missing data generation found in the literature and discuss their practical details,
elaborating on their strengths and weaknesses. Our analysis revealed that creating Missing At Random and
Missing Not At Random scenarios in datasets comprising qualitative features is the most challenging issue
in related work and therefore should be the focus of future work in the field.

INDEX TERMS Data Preprocessing, Missing Data, Missing Data Generation, Missing Data Mechanisms

I. INTRODUCTION

M ISSING Data (MD) consists of the existence of ab-
sent observations (values) in data and is a common

obstacle researchers face in real-world contexts [1]–[3]. MD
occurs in a variety of domains, for several different reasons,
and regardless of whatever they might be, has serious im-
plications for knowledge extraction and classification perfor-
mance. When datasets are incomplete, pattern classification
turns into a more complex task; therefore, over the years,
researchers have invested in developing effective strategies
to replace the missing values by plausible substitute values, a
process generally designated by data imputation [4].

A classical approach to data imputation studies follows 4
mains steps (Figure 1):

1) Collection of several complete datasets to perform the
experiments. Depending on the nature of the domain,
these datasets may encompass several feature types
(e.g. qualitative/quantitative) and different dimension-
ality (number of features and number of patterns);

2) Synthetic generation of missing data. Missing values

can be generated in only one feature (univariate con-
figuration) or several features (multivariate configura-
tion), at several percentages (missing rates). Further-
more, the generation may follow 3 different under-
lying mechanisms: Missing Completely At Random
(MCAR), Missing At Random (MAR) and Missing
Not At Random (MNAR) [5];

3) Data imputation using several strategies: common
choices rely on statistical-based methods (e.g.
mean/mode imputation) or machine learning-based
methods (e.g. KNN imputation) [6];

4) Evaluation of imputation algorithms, either in terms
of classification performance (e.g. AUC values) [2]
or quality of imputation (e.g. RMSE values) [7], by
comparing the substitute values with the ground truth
(known original values).

This review focuses on Step 2 – Missing Data Generation –
by discussing the existing approaches found in the literature.
Over the years, a great effort has been done in what concerns
the comparison of different approaches to handle MD (dele-
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FIGURE 1: Classical experimental setup in data imputation studies.

tion, imputation, model-based approaches) [6], [8], [9]), with
a special emphasis on the evaluation of new machine learning
methods for imputation (Steps 3 and 4) [10]. However, the
process of missing data generation strongly conditions the
validity of the conclusions derived from the following steps.
If the MD generation approach is ill-defined, some hitches
may arise during the experimental setup (e.g. the desired
missing rate may not be achieved for some scenarios, the
mechanisms under which data should be missing may be
broken). Thus, the established missing data setup may de-
viate from what was intended by the researcher, causing the
derived conclusions to be biased or invalid. In sum, although
the evaluation of different methods to synthetically generate
MD remains an understudied topic, it is of crucial importance
since they define the working ground for the missing data
experiments. The goal of this paper is to illustrate several
approaches to missing data generation, thoroughly analyse
their practical details and discuss their application in real-
world contexts from a theoretical and empirical perspective.
To the extent of the authors’ knowledge, there is no system-
atic research on the assessment and evaluation of missing
data generation approaches, which constitutes the novelty of
this work. The contributions of this research are as follows:

• Providing a thorough analysis of the practical details
of each approach and uncovering some issues that may
arise during their application;

• Discussing the limitations and restrictions of each ap-
proach (e.g. maximum possible MR that they are able to
generate);

• Explaining the MR assumptions of each approach (i.e.,
whether MR is defined for the entire dataset or for a
single feature) and presenting the necessary MR adjust-

ments accordingly;
• Suggesting some modifications to the original ap-

proaches and elaborating on some implementation de-
tails left undiscussed in the original papers.

Considering the contributions given above, this review
could prove instrumental for researchers from the Machine
Learning field as well as for researchers farther from this
field. Researchers familiarised with the missing data topic
may learn from an extensive analysis on missing data gener-
ation algorithms (their benefits, flaws and limitations) while
researchers farther from this topic encounter a complete
review where the key concepts on missing data theory, as well
as several approaches to missing data generation, are well
described and illustrated recurring to schemas and practical
examples.

The structure of the paper is as follows: Section II starts
by introducing some important notation that will be used
throughout the paper, whereas Section III formally describes
and illustrates the existing missing data mechanisms. Then,
in Sections IV and V, we review several univariate and
multivariate implementations for missing data generation that
are generic and applicable in several domains, and thor-
oughly analyse and compare them (by missing mechanism
and configuration) in Section VI. Section VII discusses some
domain-specific missing data generation approaches, tailored
to the peculiarities of a given context, while Section VIII
summarises the key issues one might face when perform-
ing experiments using the reviewed generic approaches and
discusses the advantages/disadvantages of domain-specific
approaches. Finally, Section IX concludes the paper and
outlines some potential directions for future research.
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II. PRELIMINARY NOTATION
In order to provide a formal description of the missing data
mechanisms, it is first necessary to establish some basic
notation and terminology. Let us assume a dataset X repre-
sented by a n × p matrix, where i = 1, · · · , n patterns and
j = 1, · · · , p features. The elements of X are denoted by
xi,j , each individual feature in X is denoted by xj and each
pattern is referred to as xi = [xi,1, xi,2, · · · , xi,j , · · · , xi,p].
In classification and missing theory domains, each pattern
is also assigned a target class ti ∈ {C1, C2, · · · , Cc} and
a missing indicator mi = [mi,1,mi,2, · · · ,mi,j , · · · ,mi,p],
which indicates the features that are missing for each pattern
xi. We can now define a missing data indicator M as a n× p
binary matrix, defined as follows [11]:

M = {mi,j}n,pi,j=1 =

{
mi,j = 1, if xi,j is missing
mi,j = 0, if xi,j is observed

(1)

M indicates the locations of the missing values in the
dataset and X may be divided into two components, X =
(Xobs,Xmiss). Xobs and Xmiss represent, respectively, the
observed and missing values in X, i.e., Xobs contains all
elements xi,j where mi,j = 0 while Xmiss contains all
elements xi,j where mi,j = 1. Rubin’s missing data theory
[12], [13] establishes that the probability distribution of M
may depend on X = (Xobs,Xmiss), and that this relation-
ship describes the missing data mechanisms, p(M | X, ξ),
whose parameters are herein denoted by ξ [14], [15]. In
practice, ξ cannot be determined with certainty; however, it
is not important to know these parameters in detail, it is only
necessary to understand whether there is or there is not a
relation between M and X components: Xobs and Xmiss.

A dataset X can suffer from different percentages of
missing data, which are referred to as missing rates (MRs)
and they can be defined for each feature individually or for
the entire dataset. Consider Table 1, which illustrates the
concepts presented above. Table 1a represents the matrix
of data X, where the number of patterns is n = 20 (20
records/lines in the table), and the number of features is
p = 2 (“Age” and “Number of Cigarettes”). Only feature
x2 (“Number of Cigarettes”) has missing values, denoted
by “⊗”, but there are several patterns that contain missing
values, {x2,x3,x8,x10,x13,x15,x17,x18}. Table 1b represents
the missing data indicator matrix M, where positions xij of
Table 1a are coded as 0/1 values according to their pres-
ence/absence. As an example, M2,1 = 0 since “Age” is
observed in pattern x2, while M2,2 = 1 since “Number of
Cigarettes” is missing in x2. Regarding the MR, feature x1
has a MR of 0% (there are no missing values in “Age”), and
feature x2 has a MR of 40% (out of 20 values, 8 are missing
in “Number of Cigarettes”, 8

20 = 40%). We may also define
the MR considering the entire dataset, that is, the total of xi,j
elements that are missing. In this case, there are a total of
patterns × features elements (20 × 2 = 40 elements), and 8
of them are missing, thus giving a MR of 8

40 = 20%, if the
entire dataset is considered.

TABLE 1: Adolescent Tobacco Study: (a) matrix of data X,
(b) response indicator matrix M.

(a)

Age Number of cigarettes

15 2
15 ⊗
15 ⊗
16 2
16 2
16 4
16 3
17 ⊗
17 6
17 ⊗
17 5
17 5
18 ⊗
18 6
18 ⊗
19 3
19 ⊗
19 ⊗
20 9
20 2

(b)

Age Number of cigarettes

0 0
0 1
0 1
0 0
0 0
0 0
0 0
0 1
0 0
0 1
0 0
0 0
0 1
0 0
0 1
0 0
0 1
0 1
0 0
0 0

TABLE 2: Missing mechanisms example: a simulated dataset
of a study in adolescent tobacco use, where the daily average
of smoked cigarettes is missing under different mechanisms
(MCAR, MAR, and MNAR).

Age Number of cigarettes

Complete MCAR MAR MNAR

15 2 2 ⊗ 2
15 9 ⊗ ⊗ ⊗
15 4 ⊗ ⊗ 4
16 2 2 ⊗ 2
16 2 2 ⊗ 2
16 7 4 ⊗ ⊗
16 3 3 ⊗ 3
17 9 ⊗ 9 ⊗
17 6 6 6 ⊗
17 4 ⊗ 4 4
17 5 5 5 5
17 5 5 5 5
18 7 ⊗ 7 ⊗
18 6 6 6 ⊗
18 7 ⊗ 7 ⊗
19 3 3 3 3
19 8 ⊗ 8 ⊗
19 3 ⊗ 3 3
20 9 9 9 ⊗
20 2 2 2 2

III. MISSING DATA MECHANISMS
We now formally characterise the different missing data
mechanisms, p(M | X, ξ) [16], illustrating each one with an
example. For this purpose, consider Table 2 which represents
a simulated dataset of a study regarding adolescent tobacco
use, with 20 participants. Feature “Age” is completely ob-
served while the “Number of Cigarettes”, is missing accord-
ing to different mechanisms, as explained in what follows.

In Missing Completely At Random (MCAR) mechanism,
M is completely unrelated to the input data X – completely
unrelated to both Xobs and Xmiss (2). For MCAR, the
probability of missingness depends only on parameters ξ; or
in other words, the probability of missing values in a feature
xj is completely random. Considering Table 2, MCAR values
were produced by random deletion: the missing values are
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not located in a particular range of “Age” or “Number of
Cigarettes” values. This mechanism can, therefore, be due
to unexpected events during the study: a participant had a flat
tire and could not attend the appointment or was with the flue.

p(M = 1 | X, ξ) = p(M = 1 | ξ) (2)

Missing At Random (MAR) mechanism occurs when the
probability of missingness depends on the observed infor-
mation Xobs, but not on Xmiss (3). In other words, the
probability of missing values in a feature xj may depend on
the observed values of other features in the dataset, but not on
the values of xj itself. In Table 2, MAR scenario is created
by the missing values of “Number of Cigarettes” for younger
participants (aged between 15 and 16 years). It could be the
case that younger adolescents are less likely to fill in their
number of smoked cigarettes per day because they do not
want to admit that they are regular smokers. However, the
missingness is unrelated to the number of cigarettes smoked
by these teenagers, had it been reported (note the “Complete”
column, where a low and high number of cigarettes would be
found among the missing values, had they been observed).
The probability of missing values in “Number of Cigarettes”
is therefore a function of the observed information Xobs only,
unrelated to the missing values in the study, Xmiss.

p(M = 1 | X, ξ) = p(M = 1 | Xobs, ξ) (3)

Finally, in Missing Not At Random (MNAR) mechanism,
the missingness may depend on both observed and unob-
served information – both Xobs and Xmiss – and the general
expression of the missing data model cannot be simplified
(4). In a simple manner, this means that the probability of
missing values occurring in a feature xj may be related to
the observed values of other features in the dataset (Xobs), as
well as the underlying, unknown values of xj itself (Xmiss).
In Table 2, MNAR values are missing for higher values of
“Number of Cigarettes”: the probability of missing values
in “Number of Cigarettes” is related to the missing values
themselves, had they been observed (note the “Complete”
column). This would be the case of teenagers that refused to
report their number of smoked cigarettes per day since they
smoked a very large quantity.

p(M = 1 | X, ξ) = p(M = 1 | Xobs,Xmiss, ξ) (4)

IV. UNIVARIATE CONFIGURATIONS
Univariate configurations, herein designated by univa con-
figurations, refer to those where only one feature in the
study suffers from missing data. These univa configurations
contrast with the unifo configurations (explained in the next
section), where the missing values affect several (if not all)
features in the dataset. The terms univa and unifo were taken
from the research of Twala et al. [17], one of the first works
regarding the synthetisation of missing data mechanisms. We
therefore begin this section with the univa implementations

of MCAR, starting with the algorithm proposed by Twala et
al. [17].

A. UNIVARIATE MCAR IMPLEMENTATIONS
The MCAR univa implementation of Twala et al. [17] con-
siders that the feature to be missing, xmiss, should be the
one most correlated with the class labels t. Furthermore,
Twala et al. considered the definition of MR as the percentage
of missing values over the entire dataset, as explained in
Section II. To respect the overall MR specified, the individual
percentage of missing values in the chosen feature must
be adjusted: for an overall percentage of MR% (over the
entire dataset), an individual feature must have p × MR%
of missing values, with p being the number of features in X.

To determine which elements should be missing in xmiss,
a Bernoulli distribution is used. The Bernoulli distribution
is a discrete distribution that has outcome 1 with probability
prob and outcome 0 with probability 1 − prob, as shown in
(5). The missing elements of xmiss are chosen by performing
n Bernoulli trials with probability of success prob, with n
being the number of patterns in the dataset and prob being
the expected MR. Thus being, each pattern is associated with
a probability of success (probability of being missing) equal
to MR (Figure 2a).

f (k, prob) =

{
1− prob for k = 0

prob for k = 1
(5)

A different MCAR univa implementation was proposed by
Rieger et al. [18] and Xia et al. [19], where random locations
of xmiss are chosen (using a random number generator) and
their values are deleted (Figure 2b).

Finally, García-Laencina et al. [6], [10] consider a MCAR
univa implementation where xmiss is either chosen randomly
or according to its relevance for classification. In this imple-
mentation, the “relevance” of a feature is determined by the
Normalized Mutual Information (NMI) between such feature
and the classification target [10]. The missing values are
randomly introduced in the feature of interest, xmiss, and
the missing rate is specified for that feature only (MR% of
missing values in that feature alone, not in the entire dataset).

B. UNIVARIATE MAR IMPLEMENTATIONS
Regarding MAR univa, five different implementations
are reviewed – MAR1univa, MAR2univa, MAR3univa,
MAR4univa and MAR5univa – following the research
works of Twala et al. [17], Rieger et al. [18] and Xia et
al. [19]. All MAR implementations make use of an ob-
served, determining feature, xd or xobs (also referred to as
a causative feature in some works [20]), which defines the
missing locations in xmiss. An example is given in Figure 3,
where the missing positions in xmiss are influenced by the
corresponding values of xobs.
MAR1univa refers to the research work of Twala et al.

[17], and similar to the MCAR univa implementation, the
feature most correlated with the class labels is chosen as

4 VOLUME 4, 2016



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2891360, IEEE Access

Seoane Santos et al.: Generating Synthetic Missing Data: A Review by Missing MechanismMCAR1 univa

b

0
<

0

1

1

1

0

0

0

1

0

0

0

1

0

0

0

1

1

0

0

x1 xmiss x3 x4 . . . xp

(a) Missing data pattern of MCAR1univa implementa-
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FIGURE 2: Schemes describing missing data patterns of each
MCAR implementation. The shaded observations represent
the location of missing values in the dataset. In (a), the ran-
domness is defined by the Bernoulli distribution, represented
by vector b.

xmiss. Then, among the remaining features, the one most
correlated with xmiss is chosen to be the determining feature
xobs. As explained for MCAR1univa, the individual feature
xmiss must have p × MR% of missing values, since in the
implementations suggested by Twala et al. the MR is defined
for the entire dataset.

After the pair of correlated features {xmiss, xobs} is found,
the locations where xmiss will be missing are then defined
according to the values of xobs. Let us define a variable k that
represents the necessary MR adjustment, k = p × MR. The
value of k% will define the percentile of xobs that must be
found in order to produce the missing values in xmiss: values
of xmiss lower than the k% percentile of xobs are set to be
missing. In other words, the percentile of k% returns the cut-
off value for which k% of xobs are lower than that cut-off.
As an example, consider an overall MR of 45% and the pair
of features {x1, x2}, where xobs is x1 and xmiss is x2. The
missing locations in x2 will be determined by the p ×MR%

MAR1 univa

<

x1 xmiss x3 xobs . . . xp

FIGURE 3: Missing data pattern of MAR1univa implemen-
tation. Shaded observations represent the location of missing
values in xmiss, whereas the magnitude of xobs values is
represented by different shades of green, with dark green
indicating higher values and light green indicating lower
values. In MAR1univa, values of xmiss are missing for
lower values of xobs.

= 90% percentile of x1. Imagine that the 90% percentile of
x1 is 3.4: values of x2 where the corresponding values x1 are
lower than 3.4 will be set to missing values. Thus being, x2
will have a total of 90% of missing values, resulting in an
overall (0+90)/2 = 45% MR, as specified. Figure 3 shows
a pictorial example of MAR1univa where the light green
positions represent the lowest values of xobs, where xmiss

is missing.
Rieger et al. [18] propose implementations MAR2univa

to MAR5univa. MAR2univa is based on the ranks of xobs
(robs): the probability of an element xi,miss to be missing is
computed by dividing the rank of xi,miss in the determining
feature xobs by the sum of all ranks of xobs (6). This is also
the implementation proposed by Xia et al. [19].

P (xi,miss = missing) =
ri,obs∑n
i=1 ri,obs

(6)

The patterns to have missing values in xmiss are then
sampled according to their resulting probability P (xi,miss).
The choice of xmiss and xobs is arbitrary and can either
be random or specified by the researcher. Furthermore, the
definition of MR is not described in the original paper and
one might consider a MR for the entire dataset or for each
feature individually.

In MAR3univa, the patterns are divided into two groups
according to the median of the determining feature xobs,
so that the probability of missingness is different among
groups according to (7) (nG1 and nG2 are the number of
patterns in Group 1 and Group 2, respectively). Again, the
patterns are sampled according to the established probability
of missingness (8).
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{
if xi,obs ≥ median(xobs), then xi,obs ∈ G1

if xi,obs < median(xobs), then xi,obs ∈ G2

(7)

{
if xi,obs ∈ G1 =⇒ P (xi,miss = missing) = 0.9

nG1

if xi,obs ∈ G2 =⇒ P (xi,miss = missing) = 0.1
nG2

(8)

InMAR4univa, the locations of xmiss that will be missing
are chosen according to the positions where xobs assumes
its highest values (Figure 4a). MAR5univa considers both
the highest and lowest values of xobs: given the necessary
number of elements to have missing values for the specified
MR, call it N , MAR5univa sets N/2 elements to have
missing values according to the highest values of xobs, and
N/2 according to the lowest (Figure 4b).

MAR4 univa

<

x1 xmiss x3 xobs . . . xp

(a) Missing data pattern of MAR4univa implementa-
tion. e)

MAR5 univa

x1 xmiss x3 xobs . . . xp

(b) Missing data pattern of MAR5univa implementa-
tion.

FIGURE 4: Schemes describing missing data patterns of each
MAR implementation. The shaded observations represent the
location of missing values in the missing feature. For the
observed feature, the values are represented with different
shades of green: darker shades are used to represent higher
values while lighter shades represent lower values.

C. UNIVARIATE MNAR IMPLEMENTATIONS
For MNAR mechanism, we refer to the implementa-
tions of Twala et al. [17] (MNAR1univa) and Xia et

MNAR1 univa

<

<<<

x1 xmiss x3 x4 xn
<

x1 xmiss x3 x4 . . . xp

(a) Dataset before missing data generation. Dark and
light green shades represent higher and lower xmiss

values, respectively.

MNAR1 univa

x1 xmiss x3 x4 xn
<

<<<

<

x1 xmiss x3 x4 . . . xp

(b) Dataset after missing data generation. The shaded
observations represent the location of missing values in
the missing feature.

FIGURE 5: Missing data pattern of MNAR1univa imple-
mentation.

al. [19] (MNAR2univa). These approaches are similar: in
MNAR1univa, the lowest values of xmiss are set to be
missing, until the desired MR is achieved; inMNAR2univa,
the same procedure is applied, although the highest values are
considered instead. MNAR1univa is illustrated in Figure 5,
where missing locations of xmiss (Figure 5b) are conditioned
by the values of xmiss itself (Figure 5a): missing values are
inserted where xmiss assumes lower values (light green). In
MNAR2univa, the highest xmiss values are deleted until the
desired MR is achieved (Figure 6).

Similar to the above-mentioned approaches by Twala et
al. [17], xmiss is the feature most correlated with the class
labels. Then, xmiss itself is used as a determining feature;
the k% percentile of xmiss is determined and values lower
than the cut-off value are set to be missing.

V. MULTIVARIATE CONFIGURATIONS
In multivariate configurations, which we denote by unifo con-
figurations, the missing values are generated in all features,
with the exception of MAR mechanism. For MAR there are
two common approaches, as will be illustrated in Section
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MNAR2 univa
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x1 xmiss x3 x4 xn
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x1 xmiss x3 x4 . . . xp

(a) Dataset before missing data generation. Darker
shades of green are used to represent higher values while
lighter shades represent lower values.

MNAR2 univa

x1 xmiss x3 x4 xn
<

<<<

<

x1 xmiss x3 x4 . . . xp

(b) Dataset after missing data generation. The shaded
observations represent the location of missing values in
the missing feature.

FIGURE 6: Missing data pattern of MNAR2univa imple-
mentation.

V-B: i) choosing one determining feature xobs that will define
the missing positions in the remaining features or ii) creating
pairs of correlated features {xobs, xmiss} where the missing
values in xmiss of each pair are defined by the corresponding
xobs feature.

A. MULTIVARIATE MCAR IMPLEMENTATIONS
MCARunifo implementations are an extension of
MCARuniva implementations, where all elements xi,j are
eligible to be deleted, instead of focusing only on a feature
xmiss. Herein, we refer to three MCARunifo implementa-
tions that follow naturally from the univa configurations.

We start with MCAR1unifo, proposed by Twala et
al. [17]. In MCAR1unifo, all features will have the same
percentage of missing values, specified by MR: n Bernoulli
trials are generated for each feature p in the dataset and the
missing elements xi,j are determined accordingly. In other
words, xi,j is missing if bi,j = 1, where b indicates the 1/0
outcome for each trial (Figure 7).
MCAR2unifo follows from the research works of Gar-

ciarena et al. [20], Zhu et al. [21], Pan et al. [22] and Ali et

MCAR1 unifo

b x1 b x2 b x3 b x4 b xp
0

<

1 0 0 1

0 0 1 0 1

1 1 1 0 1

1 0 0 0

1 0 0 1 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 0

1 0 1 0 0

0 0 1 1 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

0 0 0 0 0

0 0 0 1 0

0 0 0 1 1

1 0 0 1 1

1 1 0 0 0

0 0 1 0 0

0 0 1 0 0

1

. . .

FIGURE 7: Missing data pattern of MCAR1unifo imple-
mentation. b represents the Bernoulli distribution for each
feature.

MCAR3 unifo

<

x1 x2 x3 x4 . . . xp

FIGURE 8: Missing data pattern of MCAR2unifo imple-
mentation.

al. [23]. In MCAR2unifo, a number of N elements xi,j are
randomly and deleted (Figure 8).

The MR is defined for the entire dataset and therefore N =
n × p × MR. However, unlike MCAR1unifo, the features
are not required to have the same number of missing values,
given that all xi,j are eligible for missing data generation
and they are chosen randomly across all features. Given the
variability of possible missing datasets that can be generated
with this approach (more than for MCAR1unifo), it is
fundamental that missing data experiments using it perform
several runs [7], as further discussed in Section VI.

B. MULTIVARIATE MAR IMPLEMENTATIONS
As stated at the beginning of Section V, there are two main
approaches in what concerts MARunifo implementations:
• Consider a determining feature xobs that will determine

the missing pattern of the remaining features (p − 1
features or a subset of nxmiss features), which is the
approach proposed by Garciarena et al. [20];

• Consider several pairs of features {xobs, xmiss}: for
each pair, there is a determining feature xobs that defines
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the missing pattern of its corresponding xmiss, which is
the approach of Twala et al. [17], Ali et al. [23], Zhu et
al. [21] and Pan et al. [22].

We start by the simplest MARunifo approach, the one
proposed by Garciarena et al. [20], which we designate by
MAR1unifo. MAR1unifo considers the desired MR per-
centage and number of features nxmiss

losing their values and
starts by randomly choosing the determining feature xobs and
the missing features xmiss. Then, similarly to MAR1univa,
elements of the xmiss features corresponding to lower values
of xobs are deleted (Figure 9a). Due to the freedom of
choosing a given number of nxmiss

, the missing rates that are
possible to generate are restricted by the number of existing
features p and chosen features nxmiss

, as will be further
explained in Section VI.

We follow to the MARunifo implementation by Twala
et al. [17], MAR2unifo. As a natural extension of
MAR1univa, MAR2unifo considers the creation of several
correlated pairs where, for each pair, the most correlated
feature is chosen as xmiss (Figure 9b). As an example, for
X = {x1, x2, · · · , x8}, we could define the pairs {x1, x2},
{x3, x4}, {x5, x6} and {x7, x8}, assuming that x1 is highly
correlated with x2, x3 with x4 and so forth. Although Twala
et al. [17] do not specify the procedure for an odd number
of features (say, 9 features in the previous example), we
assume the creation of triples, where the remaining feature
(in the example, x9) is added to the pair that includes its
most correlated feature. Following the example, assuming
that the feature most correlated with x9 is x3, then the triple
{x3, x4, x9} is created instead of {x3, x4}. After the pairs are
created, the feature of each pair most correlated with the class
labels t is selected to have its values missing; for triples, the
two most correlated features with the class labels are chosen.

The desired MR is defined for the entire dataset, but since
only one feature will be missing in each pair (or two features
in case of triples), the MR must be adjusted for the individual
xmiss features (9).

For an overall MR%

{
k = 2×MR% for pairs
k = 1.5×MR% for triples

(9)

The positions where each feature xmiss will be missing are
defined according to the values of xobs: for each pair/triple,
the k% percentile of xobs is determined. Then, values of xobs
lower than the k% percentile are set missing. Similarly to
MAR1univa, the k% percentile of xobs returns the cut-off
value for which k% of xobs are lower than that cut-off. As
an example, consider an overall MR of 45% and 5 features
already paired: {x1, x2} and {x3, x4, x5}, where x2, x4 and
x5 are the most correlated with the class labels t. The missing
positions in x2 will be determined by the 2× MR = 90%
percentile of x1 and the missing positions in x4 and x5 will
be determined by the 1.5× MR = 67.5% percentile of x3.
Imagine that the 90% percentile of x1 is 3.4: values of x2
where the corresponding values of x1 are lower than 3.4 will

MAR3 unifo

xmiss_1 x2 xmiss_3 x4 xobs . . . xmiss_p

(a) MAR1unifo.

MAR1 unifo

xobs_1 xmiss_1 xobs_2 xmiss_2 xobs_p . . . xmiss_p

(b) MAR2unifo.

FIGURE 9: Schemes describing missing data patterns of (a)
MAR1unifo and (b) MAR2unifo.

be set missing and x2 individually will have 90% of missing
values. The same is performed for x4 and x5. Thus, x1 and
x3 will be complete, x2 will have 90% of missing values and
x4 and x5 will have 67.5% of missing values each, resulting
in an overall (0 + 90 + 0 + 67.5 + 67.5)/5 = 45% missing
rate.

Ali et al. [23] propose a similar approach to the above,
and we will refer to their approach as MAR3unifo.
In MAR3unifo, the dataset X is first decomposed into
pairs/triples of correlated features, and one feature in each
pair/triple conditions the missing pattern of the remaining.
However, authors do not elaborate on the choice of which
features should be missing and which should be observed;
therefore, we assume that the choice may be performed ran-
domly. For each pair/triple, one feature is randomly chosen
to be the determining feature xobs and the remaining are
therefore the missing features, xmiss.

Another difference of this approach in comparison to
MAR2unifo is that it considers the median of each xobs to
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define the missing pattern of xmiss. Given a pair of features
{xobs, xmiss}, the median of xobs is determined and two
groups are defined: one that contains the positions of xobs
whose values are lower than (or equal to) its median and the
other containing the positions whose values are higher than
its median. Then, one of those groups is randomly selected
and will define the missingness of xmiss in the following
way: given a missing rate MR%, 4× MR% (or 3× MR%
for triples) of missing positions are randomly chosen from
the group, and the corresponding positions in xmiss are set
missing.

The MARunifo approach by Zhu et al. [21] and Pan et
al. [22] (MAR4unifo) handles features according to their
type. If xobs is continuous or ordinal, the median of xobs is
determined and two groups are created, as in the approach
by Ali et al. [23]: one where the values of xobs are lower
or equal to the median and other where values of xobs are
higher than the median. Otherwise, if xobs is nominal, the
existing categories are assigned to two groups of equal size.
According to the original paper [21], this assignment is
performed by randomly dividing the categories of xobs into
two parts, although this does not guarantee that two equally-
sized groups are formed, as further detailed in Section VI.
After creating the groups, one is randomly chosen and their
corresponding values in xmiss are set missing with 4 × MR
or 3 ×MR, for triples.

C. MULTIVARIATE MNAR IMPLEMENTATIONS

MNARunifo implementations follow from the MARunifo

implementations discussed in the previous section, proposed
in the same research works – Garciarena et al. [20], Twala
et al. [17], Ali et al. [23], Zhu et al. [21] and Pan et al. [22].
Similarly, we start by the approach presented in Garciarena
et al. [20], herein referred to as MNAR1unifo.

Garciarena et al. propose two MNAR approaches desig-
nated MIV and MuOv in the original paper [20]. MIV stands
for Missingness depending on its Value Itself and directly
illustrates the mechanism explained in Section III, where the
probability of a value to be missing depends on the value
itself. MuOv (Missing depending on unobserved Variables)
is somewhat a domain-based MNAR approach, and therefore
we will illustrate it in Section VII. MIV approach (herein
designated MNAR1unifo) is an extension of MAR1unifo,
where xobs = xmiss. In other words, there is not a deter-
mining feature xobs that affects the missingness of xmiss.
Instead, the probability of a value to be missing in each
feature xmiss is determined by the values of each xmiss itself.
In MNAR1unifo, as illustrated in Figure 10, the lowest
values of each xmiss are found and deleted, according to
the specified MR. Similarly to MAR1unifo, MR is specified
for the entire dataset and the number of features losing their
values can be chosen by the researcher.

The MNARunifo approach proposed by Twala et
al. [17], MNAR2unifo, follows the same pairing logic as
MARunifo. However, the values that are set missing in

x1 x2 x3 x4 xp x1 x2 x3 x4 xn
<

MNAR3 unifo

. . .

(a)
x1 x2 x3 x4 xn

<

x1 x2 x3 x4 xp

MNAR3 unifo

. . .

(b)

FIGURE 10: Missing data pattern of MNAR1unifo im-
plementation: (a) Dataset before missing data generation.
Darker shades of green represent higher values while lighter
shades represent lower values; (b) Dataset after missing data
generation. The shaded observations represent the location of
missing values in the missing feature.

feature xmiss of each pair/triple are defined by the values of
xmiss itself: lower values of xmiss are deleted.

Contrariwise, the MNARunifo approaches by Ali et
al. [23] (MNAR3unifo), Zhu et al. [21], and Pan et al. [22]
(MNAR4unifo) do not require the creation of pairs/triples
since the missing values are generated directly in all features,
according to their respective medians. In MNAR3unifo,
two groups are defined for each feature, one with values
lower or equal to its median and the other with values higher
than its median. Then, one group is randomly chosen to
have 2 × MR% of missing values, so that the overall MR%
over the entire dataset is kept. Similarly, in MNAR4unifo,
missing values are inserted directly in each feature, without
the need of creating pairs/triples of features. As performed
for MAR4unifo, if the feature is continuous or ordinal, two
groups are created using its median; if the feature is nominal,
the existing categories are divided into two equally-sized
groups. Then, for each feature, one of those groups is selected
to have 2 ×MR% of missing values.

VI. CRITICAL ANALYSIS AND DISCUSSION
In this section, we provide a thorough analysis of some
details that were left undiscussed in the original papers pre-
viously discussed, also referring to non-obvious issues that
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may arise in each implementation.

A. MCAR UNIVA IMPLEMENTATIONS
Table 3 refers to some issues/restrictions in MCAR univa im-
plementations. In what concerns MCAR1univa, three main
issues need to be considered:

• Definition of MR: By defining the MR over the entire
dataset, the possible highest MR that is possible to
simulate is dependent on the number of features com-
prised in the dataset. As an example, if dataset X has 2
features, the highest MR possible is limited to 50%, and
ideally, should be lower, since, for 50%, xmiss would be
completely missing, given the p×MR adjustment.

• Usage of Bernoulli trials: To generate the missing
values, n Bernoulli trials are performed, each with prob-
ability of success p = MR. According to the Law of
Large Numbers (LLN), as the number of Bernoulli trials
increases (as n, the number of patterns in X increases),
the empirical probability of success (the real MR gen-
erated) will converge to the theoretical probability of
success (the specified MR). As the name implies, the
LLN applies when a large number of experiments is
performed (large n). Therefore, for small datasets, there
is no guarantee that the generated MR will coincide
with the desired MR (it will be approximate, though not
precise). As an example, for a desired MR of 30%, a
certain run of MCAR generation could provide a real
MR of 28% while another could return a real MR of
34%. Naturally, there is frequently a small bias in the
generated missing percentages in several approaches,
due to the rounding performed for the calculation of the
number of missing positions to generate. However, this
bias seems to be more significant when considering the
usage of Bernoulli trials (for small datasets).

• Correlation between features: In all of the implemen-
tations by Twala et al. [17], [24], xmiss is the feature
most correlated with the class labels. Furthermore, in
some approaches, there is also the need to define pairs
of correlated features. In the original papers, Twala
et al. consider datasets composed by both quantitative
and qualitative features, yet the computation of the
correlation between different types of features is not
specified. Possible solutions to measure the correlation
between different feature types are the computation of
mutual information between features or the calculation
of different coefficients according to each feature type
(e.g. Pearson coefficient for two continuous features,
phi coefficient for two binary features, point-biserial
for a continuous and a binary feature, and so forth).
The latter solution, however, would have to be looked
at as an approximation, since there is no proper way to
compare different coefficients.

MCAR2univa implementation allows the definition of
MR for the entire dataset or for a single feature and de-
pending on that choice, there are different restrictions to the

allowed missing rates (Table 3). Regarding xmiss, it can be
randomly chosen or defined by the researcher. To provide
a consistent experimental setup, one could choose the same
feature xmiss to be missing at several MRs (e.g. 5, 10, 20%)
and study the effects that higher MRs have in classification
performance.

Choosing xmiss according to the highest mutual informa-
tion (MI) with the class labels t (MCAR3univa) might be
problematic for quantitative/continuous features. The MI for
two qualitative/categorical features is straightforward since
the probability densities can be estimated using a histogram
[22]. However, for quantitative/continuous features, the esti-
mation of probability densities is more complicated. Frequent
solutions include the discretisation of continuous features
[22] or applying Parzen-windows estimation [25], which is
the method chosen for MCAR3univa. The computation of
Parzen windows can, however, be computationally expen-
sive.

Among all approaches, MCAR2univa is an efficient
method, straightforward to understand and implement, and
thus we recommend it for standard MCAR univa experi-
ments.

B. MAR UNIVA IMPLEMENTATIONS
The limitations found for MAR univa implementations are
summarised in Table 4. MAR1univa is based on finding a
k% percentile of xobs to define a cut-off value: values of
xmiss lower than such cut-off are set missing.

Using this k% percentile might be problematic for nominal
features (for which only mode applies) and ordinal features
with several repeated values. Imagine xobs = [1, 1, 2,
2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]. If we
were to consider k = 50%, the percentile of xobs would be
3. However, setting values lower to 3 to missing would only
return a 5/15 = 33% missing rate.

In practice, the percentile should not be applied directly,
and a simpler approach could be considered: deleting the
lowest k% values, to guarantee that the desired missing rate
is respected. For unordered features (nominal), however, the
issue remains.

In MAR2univa, higher ranks of xobs condition the miss-
ing positions in xmiss. According to (6), the missing posi-
tions should correspond to the highest ranks of xobs. Nev-
ertheless, (6) only defines the probability of each position
in xmiss to be deleted, which does not mean that a value
with a low probability cannot be chosen to be deleted. From
a pessimistic perspective, this means that values in xmiss

corresponding to both low and high ranks of xobs can be
missing (although higher ranks are preferred) which would
slightly break MAR assumption.

This issue is also shared by MAR3univa, where xobs
values higher than its median should define the missing
positions in xmiss, although there is no guarantee that only
xmiss values corresponding to xobs values higher than the
median are chosen. Besides, the objective of dividing two
groups according to their median in MAR3univa is to create
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TABLE 3: Reviewed implementations for MCAR univa implementations: main characteristics and pitfalls.

Publication Algorithm Description Issues/Restrictions

Twala et al. [17] MCAR1univa
Random locations of xmiss are derived from a Bernoulli distribution.
xmiss is the feature most correlated with the target class t. MR is defined
for the whole dataset. MR for xmiss = p× n×MR.

Bernoulli distribution may not guarantee the
necessary missing rate. MR < 100/p. Cor-
relation between features not addressed in the
original paper.

Rieger et al. [18]
Xia et al. [19] MCAR2univa

Random locations of xmiss are deleted. xmiss may be chosen randomly
or by the researcher. MR definition may be chosen by the researcher.

MR < 100/p if it is defined for the entire
dataset and MR < 100 if its defined only for
xmiss.

García-Laencina et
al. [6] MCAR3univa

Random locations of xmiss are deleted. xmiss can be chosen randomly
or according to its relevance for classification (highest or lowest mutual
information). MR is defined for a single feature.

MR < 100. Estimation of continuous proba-
bility density functions is challenging.

two approximately equally-sized groups, which might not be
possible for ordinal features (similarly to MAR1univa) and
does not apply to nominal features. This could affect the
nG1 and nG2 values and, in an extreme case, could lead
to having the same probabilities for all values in xmiss, if
nG1 = 9×nG2. An example would be a feature xobs = “Sta-
tus” = [1, 2, 2, 2, 2, 2, 2, 2, 2, 2], where
all values would have the same probability (0.1) of generating
missing positions in xmiss. This, however, traduces a MCAR
mechanism, not MAR.
MAR4univa follows a standard approach for MAR gen-

eration, where the values of xobs are ordered and the N
highest values (according to the specified missing rate) are
set missing. MAR5univa, by generating N/2 missing val-
ues where xobs assumes its highest values and N/2 where
it assumes the lowest, may create a rather blurred MAR
mechanism for ordinal features. As an example, for xobs =
[1, 2, 2, 2, 2, 2, 3, 3, 3, 3] a MAR5univa
approach with MR = 60% would delete values of xmiss

corresponding to the subsets [1, 2, 2] (lowest) and [3,
3, 3] (highest). The MAR assumption would be hard to
verify since it would seem that the values of xobs were
not related to missing positions in xmiss. In turn, a 60%
MAR4univa would delete values of xmiss corresponding
to the subset [1, 2, 2, 2, 2, 2] where the relation
between xobs and xmiss would be more clear: lower values
in xobs condition the missingness of xmiss. Considering all
approaches, MAR4univa, although simple, seems the most
robust. Nevertheless, for nominal features as the determining
features (xobs), both MAR4univa and MAR5univa would
require some adjustments, since values cannot be ordered.

C. MNAR UNIVA IMPLEMENTATIONS

Table 5 summarises the characteristics of MNAR univa
approaches. MNAR1univa suffers from the same restric-
tions as MAR1univa, although the issues derived from the
usage of the cut-off defined by the k% percentile may be
attenuated by an ordering of values. After this modification,
MNAR1univa and MNAR2univa are equivalent, except
for three small differences: MNAR1univa chooses xmiss

as the most correlated with the class labels (MNAR2univa
chooses randomly), MNAR1univa considers the lowest
values of xmiss while MNAR2univa chooses the highest

and MNAR1univa considers MR for the entire dataset
while MNAR2univa considers the MR for a single feature.
MNAR1univa strives for consistency due to the choice
of xmiss while MNAR2univa strives for simplicity and
flexibility: the definition of MR is not subjected to so much
restrictions and the input of xmiss can be easily adapted to
consider a user-defined feature index. We therefore select
MNAR2univa as the go-to implementation.

D. MCAR UNIFO IMPLEMENTATIONS
The characteristics of MCAR unifo approaches are pre-
sented in Table 6. Given the use of Bernoulli trials,
MCAR1unifo suffers from the same limitation of its univa
analogous, where for small datasets (small n) the desired
MR may not be guaranteed. In MCAR2unifo, since all xi,j
are eligible to be missing, this approach generates a great
amount of different missing datasets. Given the variability
of possible missing datasets that can be generated (more
than for MCAR1unifo), it is fundamental that missing data
experiments using it perform several runs.

These two approaches are rather different, therefore the
choice of one will come down to the objectives and ne-
cessities of the experiments – MCAR2unifo is a popular
approach [3], [7].

E. MAR UNIFO IMPLEMENTATIONS
Table 7 summarises the main characteristics and pit-
falls of MAR unifo approaches. The flexibility given by
MAR1unifo in what concerns the choice of the number of
features to be missing leads to the restriction of possible
missing rates according to (10).

MR ≤ 100× nxmiss

p
and nxmiss

≤ p− 1 (10)

This means that, for a given number of missing features
nxmiss

, it may not be possible to generate the desired MR
and, conversely, that the number of chosen nxmiss

may not
be enough to guarantee the desired MR. As an example,
consider a dataset X with n = 303 patterns and p = 5
features. To produce a MR of 60%, n × p × MR / 100 =
303 × 5 × 60/100 = 909 values need to be missing. If only
nxmiss

= 2 features are considered, that would mean that
909/2 = 455 patterns would have to be missing in each
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TABLE 4: Reviewed implementations for MAR univa implementations: main characteristics and pitfalls.

Publication Algorithm Description Issues/Restrictions

Twala et al. [17] MAR1univa

Values of xmiss corresponding to the lowest values in xobs

are deleted. xmiss is the feature most correlated with the
target class t and xobs is the feature most correlated with
xmiss. MR is defined for the whole dataset.

MR < 100/p. Correlation between features not addressed in
the original implementation. Computation of percentiles k%
considered in the original implementation could be problematic
for qualitative data.

Rieger et al. [18]
Xia et al. [19] MAR2univa Missingness on xmiss depends on the ranks of xobs. MR < 100/p if it is defined for the entire

dataset and MR < 100 if its defined only
for xmiss. MAR mechanism could be
weakened in some situations. Random
choice of xobs and xmiss could weaken
the consistency of experiments.

MAR3univa
Values of xmiss where corresponding values of xobs are
equal to or higher than its median have a missing probability
9 times higher than the remaining values.

Rieger et al. [18] MAR5univa
For a total number of missing values N , N/2 locations of
xmiss are deleted for the highest values of xobs and N/2
for the lowest values.

MAR4univa
Values of xmiss corresponding to the highest values of xobs

are deleted.

MR < 100/p if it is defined for the entire dataset and MR
< 100 if it is defined only for xmiss. Random choice of xobs

and xmiss could weaken the consistency of experiments.

TABLE 5: Reviewed implementations for MNAR univa implementations: main characteristics and pitfalls.

Publication Algorithm Description Issues/Restrictions

Twala et al. [17] MNAR1univa
Lower values of xmiss are deleted. xmiss is the feature
most correlated with the target class t. MR is defined for the
whole dataset.

MR < 100/p. Correlation between features is not addressed
in the original implementation. Computation of percentiles
k% considered in the original implementation could be prob-
lematic for qualitative data.

Xia et al. [19] MNAR2univa
Higher values of xmiss are deleted. xmiss can be chosen
randomly or by the user. MR is defined for a single feature.

MR < 100. Random choice of xmiss could weaken the
consistency of experiments.

TABLE 6: Reviewed implementations for MCAR unifo implementations: main characteristics and pitfalls.

Publication Algorithm Description Issues/Restrictions

Twala et al. [17] MCAR1unifo
Random locations in each feature are derived from a
Bernoulli distribution. All features will have missing data
in the same percentage.

Bernoulli Distribution may not guarantee the neces-
sary missing rate. MR < 100.

Garciarena et al. [20]
Zhu et al. [21]
Pan et al. [22]
Ali et al. [23]

MCAR2unifo Random locations xi,j are chosen to be missing.
Features may have very different percentages of miss-
ing data. High variability between runs of the algo-
rithm. MR < 100.

feature, which is impossible. In this case, to guarantee that
the MR would be respected, nxmiss ≥ 4 features should be
considered.

MAR2unifo is subjected to the same issue as
MAR1univa in what concerns the definition of k% per-
centiles. This issue may be surpassed in the same way as
for MAR1univa: instead of directly applying a cut-off value
defined by k, one could consider the lowest k% values, to
guarantee that the desired missing rate is achieved. A less
obvious issue with MAR2unifo resides in the definition of
MR and the creation of pairs/triples. Since the MR is defined
for the entire dataset, the percentage of missing values in
xmiss needs to be adjusted accordingly: 2 × MR for pairs
and 1.5 × MR for triples. Therefore, the maximum MR that
can be specified to guarantee that the overall MR is achieved
and that the xmiss features are not completely deleted is MR
= 100/2 = 50%.

Regarding MAR3unifo, using the median to define two
groups and, more importantly, sampling missing values from
only one of those groups may be problematic in some cases.
Given the restriction of sampling from one of the groups, the
MR generated in xmiss is adjusted to 4 times higher (or 3

times higher for triples) so that the overall missing rate is
respected. In some scenarios where xobs is qualitative, there
might not be enough samples in one of the groups to choose
from.

For instance, imagine a dataset composed of features
{“Status”, “Age”}, where xobs = “Status”, contains 1/2
values that encode “High” (70% of values) and “Low” (30%
of values) status. Since the median of xobs will be 1, values
lower or equal to 1 are put in one group (70%) and values
higher than 1 are put in the other group (30%). If a MR of
20% is desired, then 4 × MR = 40% of missing values need
to be generated in “Age” (xmiss). If the group “Status” = 2
is chosen to sample from, there are not sufficient samples to
guarantee the desired MR. In another scenario, if “Status”
values were coded as 1/0, then one of the groups would be
empty since all values are lower or equal to the median: if
that empty group was chosen to sample from, no missing
data would be generated at all; if the other group (containing
all data) is chosen instead, then 40% of the samples are
randomly chosen considering all possible values. In this
case, the MAR mechanism may not be respected given that
missing values in “Age” would not be related to values of
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TABLE 7: Reviewed implementations for MAR unifo implementations: main characteristics and pitfalls.

Publication Algorithm Description Issues/Restrictions

Garciarena
et al. [20] MAR1unifo

Values of the nxmiss
features corresponding to the lowest

values in xobs are set missing. nxmiss
is specified by the

researcher.

MR≤ 100×nxmiss
/p. Random choice of xobs and

xmiss may weaken the consistency of experiments.

Twala et al. [17] MAR2unifo

Pairs of correlated features {xobs, xmiss} are defined. Values
of xmiss corresponding to the lowest values in xobs are deleted.
For each pair, xmiss is the feature most correlated with the target
class t.

Correlation between features and formation of triples
not addressed in the original paper. Computation of per-
centiles k% considered in the original implementation
could be problematic for qualitative data. MR < 50.

Ali et al. [23] MAR3unifo

Pairs of correlated features {xobs, xmiss} are randomly de-
fined. Two groups in xmiss are defined according to the median
of xobs. One of those groups is randomly chosen to have missing
values. In each pair, xmiss is randomly chosen.

Correlation between features and formation of triples
is not addressed. Median may not always guarantee
two equally-sized groups. MAR mechanism could be
weakened in some situations. MR < 25.

Zhu et al. [21]
Pan et al. [22] MAR4unifo

Random pairs of features {xobs, xmiss} are defined. For con-
tinuous or ordinal features, two groups in xmiss are defined
according to the median of xobs; for nominal features, values
are divided into two equally-sized groups and one is randomly
chosen to have missing values. In each pair, xmiss is randomly
chosen.

MR < 25. In extreme scenarios, the median may not
always guarantee two equally-sized groups for quantita-
tive features or the necessary number values to delete.
Division of qualitative values may also be problematic.
MAR mechanism could be weakened in some situations.

“Status”: since all values are possible to choose from, this
would more likely traduce a MCAR mechanism. Similarly
to MAR2unifo, some adjustments need to be performed
for the MR in each xmiss for pairs/triples. Accordingly, the
maximum MR that can be specified is MR = 100/4 = 25%.
MAR4unifo is the only approach that considers both

quantitative and qualitative features. However, i) qualitative
features with several repeated values can still weaken MAR
assumption, as previously discussed and ii) the definition of
two groups according to the median can still be problematic
for quantitative features, if some values are repeated often.
Besides, the generic strategy of creating two groups accord-
ing to the median may not work well for high missing rates,
since the adjustment of 4 ×MR or 3 ×MR that are required
in each xmiss may easily require the deletion of more values
than the ones that exist in the defined groups.

Given the stronger restrictions in MR of MAR2unifo,
MAR3unifo, and MAR4unifo implementations, we con-
sider that MAR1unifo is perhaps the most adequate MAR
unifo generation algorithm.

F. MNAR UNIFO IMPLEMENTATIONS
MNAR unifo implementations are characterised in Table 8.
Since they are very similar to their MAR unifo analogous,
the same restrictions apply. MNAR1unifo suffers from the
same restrictions as MAR1unifo, due to the flexibility of
choosing a given number nxmiss of missing features (11).

MR ≤ 100× nxmiss

p
and nxmiss

≤ p (11)

MNAR2unifo suffers from the same restrictions as
MAR2unifo, given that for MNAR, the pairs/triples of cor-
related features are also defined and, therefore, the respective
adjustments to the MR need to be applied.
MNAR3unifo and MNAR4unifo do not require the

formation of pairs/triples since all the features will have
missing values. Nevertheless, due to the formation of two
groups for each feature, the MR needs to be adjusted as well.

For a specified MR, each feature xmiss needs to have MR%
of missing values. However, since two groups are defined
for each feature (with approximately 50% of data, which
is the objective of using the median) and only one of those
groups is used to generate missing values, then the maximum
possible MR is 50%. As in previous approaches, the use of
the median might be problematic in some scenarios. First, it
may not guarantee two equally-sized groups and, therefore,
the desired MR might not be achieved; secondly, and espe-
cially in the case of MNAR3unifo, for qualitative features
with several repeated values, the MNAR assumption may be
weakened, as explained for MAR mechanism.

Again, given the stronger restrictions in MR of
MNAR2unifo, MNAR3unifo and MNAR4unifo imple-
mentations, we consider that MNAR1unifo is perhaps the
most adequate MNAR unifo generation algorithm.

VII. DOMAIN-BASED MISSING DATA GENERATION
APPROACHES
The implementations presented in the previous sections are
rather generic approaches to missing data generation. They
were developed for general domains, with no particular
focus on the peculiarities of a given domain and without
assuming any apriori knowledge of the domain (e.g. known
relationships between features in the study). However, some
missing data generation approaches found in the literature
are adapted to the domain in question. In this section, we
review some domain-specific approaches to missing data
generation. Some, although uncommon, may be generalised
to different domains; others are not generalisable but may
contain interesting details to consider for some real-world
domains (e.g. healthcare domains).

Song and Shepperd [26] focus on evaluating imputation
methods for small project effort data sets. In this domain,
MAR data is generated according to the size of the project.
First, records are ordered by project size; then, the dataset
is divided into 4 parts with different percentages of missing
data: for each part d, its missing percentage is proportional to
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TABLE 8: Reviewed implementations for MNAR unifo implementations: main characteristics and pitfalls.

Publication Algorithm Description Issues/Restrictions

Garciarena
et al. [20] MNAR1unifo

Lower values of xmiss are deleted. nxmiss
is defined by the

researcher.
MR ≤ 100 × nxmiss

/p. Random choice of xmiss

may weaken consistency of experiments.

Twala et al. [17] MNAR2unifo
Pairs/Triples of correlated features are defined. For each pair, the
feature most correlated with the target class t is chosen to be
missing (xmiss): lower values of xmiss are deleted.

Correlation between features and formation of triples is
not addressed in the original paper. Computation of per-
centiles k% considered in the original implementation
could be problematic for qualitative data. MR < 50%.

Ali et al. [23] MNAR3unifo
For each feature, two groups are defined according to its median.
One of the groups is randomly chosen to have missing values.

MR < 50%. Median may not always guarantee two
equally-sized groups. MNAR mechanism could be weak-
ened in some situations.

Zhu et al. [21]
Pan et al. [22] MNAR4unifo

For continuous or ordinal features, two groups are defined accord-
ing to its median; for nominal features, values are divided into
two equally-sized groups. For each feature, one of these groups is
randomly chosen to have missing values.

MR < 50%. In extreme scenarios, the median may not
always guarantee two equally-sized groups for quantita-
tive features or the necessary number of values to delete.
Division of qualitative values may also be problematic.
MNAR mechanism could be weakened in some situations.

Md∑4
d=1 Md

×MR, where Md is the mean of project size of the
dth part.

Josse et al. [27] use synthetic data to generate two different
MAR scenarios, “MAR easy” and “MAR difficult” for a
simulated dataset comprising 9 features that could be divided
into two blocks of correlated features: {x1, x2, x3, x4, x5}
and {x6, x7, x8, x9}. Then, “MAR easy” would consist of
deleting values of x2 to x5 according to values of x1 and
deleting values of x6 to x8 according to values of x9. This
traduces a situation where the missing values are easier to
recover given the known existing correlation between fea-
tures. “MAR difficult” worked by deleting values of x6 to
x9 according to values of x1 and deleting values of x1 to x5
according to values of x9, so that the available information to
predict missing values is very limited.

Johansson and Karlsson [28] focus on strategies to handle
missing values in clinical data. A pharmacokinetic model was
used to generate a synthetic dataset where missing values
were generated in feature “Sex”. For MCAR, values of “Sex”
were randomly deleted; for MAR missing values in “Sex”
were generated according to the “Weight” of the subjects and
finally, for MNAR, missing values in “Sex” were deleted for
male subjects.

Olsen et al. [29] study the effects of handling missing
data in clinical trials of knee osteoarthritis. Missing data was
generated in two MNAR scenarios: Scenario A, where the
probability of missing data was dependent on changes of
pain, physical function and patient’s global assessment, and
Scenario B, where the missingness was dependent on type of
treatment and consequent effects.

Nanni et al. [30] focus on discovering an imputation
method that would perform well in medical domains. Thus,
authors generate MCAR data in a different fashion: instead
of generating MR% of missing values in each feature or in
the whole dataset directly (deleting MR% of xi,j elements),
the missing values are generated in each pattern xi. In other
words, each pattern xi will have MR% of missing values,
where different features can be missing for different patterns
(Figure 11). This translates a context where all patients have
at least one missing observation.

MCAR2 unifo

<

x1 x2 x3 x4 . . . xp

FIGURE 11: Missing data pattern of the MCAR implemen-
tation by Nanni et al. [30].

Deb and Liew study missing value imputation for the
analysis of traffic accident data and generate missing val-
ues in a similar way to Nanni et al. [30]: missing values
are generated by pattern, rather than by feature [31]. This
generation method follows from the research of Rahman
and Islam [32], [33] and considers four main configuration
types: Simple, Medium, Complex and Blended. In the Simple
generation, each pattern xi has at most one missing value;
in Medium generation, each pattern xi has a minimum of
2 missing values and at most 50% missing values and in
Complex generation, each pattern xi has between 51% and
80% missing values. Finally, Blended generation considers a
mixture of the remaining types – 25%, 50% and 25% of pat-
terns according to Simple, Medium and Complex generation
types, respectively.

Furthermore, two different models for missing data gen-
eration are used: Uniformly Distributed (UD) and Overall
models. In the UD model, it is guaranteed that all features
have the same amount of missing values, whereas in the
Overall model missing values can be dispersed across several
features (in the worst-case scenario, they can all appear in a
single feature).

Garciarena et al. [20], as mentioned in Section V-C, pro-
pose another version to generate MNAR data, called MuOv
(Missing depending on unobserved Variables). MuOv rep-
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MNAR2 unifo

<

x1 x2 x3 x4 . . . xp

FIGURE 12: Missing data pattern of the MuOv implementa-
tion by Garciarena et al. [20].

resents a MNAR scenario where the probability of missing
values in a feature is related to some other feature that was not
considered in the study. In this case,N patterns are randomly
chosen to be missing (according to the desired MR) and
their values on each feature to be missing are deleted (Figure
12). Although MuOv does not consider the application to a
specific domain, we have included it here since it is rather an
uncommon MNAR approach, as previously discussed.

Valdiviezo et al. [34] introduced missing values in
real-world datasets according to different mechanisms and
schemes. In general, two schemes are followed for each
mechanism: either considering all features (first scheme) or
considering only one-third of features, which are randomly
chosen (second scheme). Regarding MCAR mechanism, the
first scheme inserts MR% of missing values in each feature
while in the second scheme, since only one-third of features
will have missing data, each of those features will have 3×
MR% of missing values. In the original paper, this adjustment
is not mentioned, but we have decided to discuss it so that the
overall MR is respected.

In MAR mechanism, the first scheme randomly selects one
feature to be the determining feature, xobs, and the remaining
p− 1 features will have their values missing according to the
values of xobs. To that end, the values of xobs are transformed
into probabilities by a logistic function, and the missing
locations for the remaining features are sampled according
to such probability.

Finally, in MNAR mechanism, the first scheme deletes the
highest or lowest values of each feature in the dataset, while
the second scheme proceeds in the same way but only for
one-third of features.

Soares et al. [35] study how different methods behave
when imputing data from different continuous distributions.
To that end, each feature is fitted against a comprehensive
set of continuous distributions and missing values are gen-
erated according to 7 distinct methods, T1 to T7. Method
T7 is a standard MCAR approach (MCAR2univa), where
the same amount of missing values are randomly inserted in
each feature. The remaining methods are MNAR approaches,
where the missing values are removed according to each fea-

ture’s probability density functions or frequency histograms.
Methods T1 to T3 are pdf-based while methods T4 to T6 are
freq-based. For each method, three different scenarios are
considered: removing from the outer areas, inner areas or
both. Outer and inner areas correspond to low and high values
of the pdf and frequency histogram, respectively (Figure 13).

VIII. DISCUSSION
Overall, we may divide the issues of reviewed approaches
into three different types: Theoretical flaws, Empirical flaws
and Experimental Setup hazards. Theoretical flaws refer to
design flaws in the approaches: problems that may arise
in some of the key ideas of the approach. Empirical flaws
refer to some issues that may occur not (solely) due to the
rationale behind each approach, but generated by specific
conditions that may arise in some domains (e.g. different
feature types), often discussed throughout the paper. Finally,
Experimental Setup hazards are not considered flaws inherent
to the approaches per se, but refer to some details that should
be taken into account: they are considered hazards in the
sense that they are risks, but can easily be surpassed by a
careful experimental design.
• Theoretical flaws:
◦ Usage of Bernoulli trials: For datasets with a small

number of patterns (small n), Bernoulli trials may
not provide the desired MR. To surpass this issue
several algorithms use random permutations of xi,j
positions instead.

◦ Definition of pairs/triples and consequent MR
adjustments: On one hand, defining pairs/triples of
features is an interesting approach since we guaran-
tee that there is a relation between the features. In
MAR and MNAR, for each missing feature, there
is another highly correlated with it (completely
observed) that, in theory, possesses information that
may be relevant when imputing the missing values.
However, defining these pairs/triples may condition
the MR greatly, due to the necessary adjustments:
depending on the implementation, the MR may be
limited from less than 50% to less that 25%.

• Empirical flaws:
◦ Usage of the median to define groups: Us-

ing the median generally aggravates the MR
restrictions, especially for MAR unifo imple-
mentations. Furthermore, if the dataset com-
prises qualitative features, the use of the me-
dian can, in some situations, weaken the mech-
anisms or fail to provide the specified MR
(e.g. MAR3univa, MAR3unifo, MAR4unifo,
MNAR3unifo, MNAR4unifo, among others).

◦ Usage of cut-off values defined using percentiles:
Defining a cut-off value and deleting values ac-
cordingly might fail to provide the desired MR,
especially if qualitative features are at state, as
explained throughout the paper. Among all imple-
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(a) T1: pdf-outer (b) T2: pdf-inner (c) T3: pdf-both

(d) T4: freq-outer (e) T5: freq-inner (f) T6: freq-both

FIGURE 13: Strategies for missing data generation T1 to T3 are pdf-based methods while T4 to T6 are freq-based methods.

mentations, cut-off values based on percentiles are
only considered in Twala et al. [17], which could
be replaced by a sorting of the values to guarantee
that the necessary MR is respected. Nevertheless,
the sorting requires that a feature can be ordered,
which is not always the case.

• Experimental Setup hazards:

◦ Random choice of determining and missing fea-
tures: If we consider a typical experimental setup
where n datasets are chosen to generate missing
values, one important aspect is to make the exper-
iments as consistent as possible. As an example,
consider a dataset X where MAR values are gener-
ated in MRs of 10%, 20%, 30% and so on. If miss-
ing values are generated according toMAR1unifo,
for instance, where the determining and missing
features are randomly chosen, there are several
factors (besides the increase of the MR) that affect
the final results. These type of assumptions and lim-
itations need to be established apriori, according to
the objectives of the experiments. In some cases,
the presented domain-based approaches might be
worthy of consideration (e.g. Nanni et al. [30]),
adapting the missing value generation to the context
and objectives of the study.

◦ Variability of generated missing datasets: In
some cases, especially in MCAR approaches, the
possibilities of obtaining different outcomes is
enormous and, therefore, several runs should be
performed. As an example, two different runs of
MAR2unifo might provide datasets with differ-
ent “difficulty degrees” for imputation algorithms.
Nevertheless, this is not an issue of the approach
per se but should be bypassed by the design of
experiments.

IX. CONCLUSIONS AND POTENTIAL RESEARCH
DIRECTIONS

This manuscript reviews a considerable number of miss-
ing data generation approaches, for different configurations
(univariate and multivariate) and missing data mechanisms
(MCAR, MAR, and MNAR). Their limitations are discussed
from a theoretical and empirical view and some modifica-
tions are suggested in order to surpass them. Additionally,
we refer some less common approaches – herein named
“domain-based” approaches – in order to illustrate existing
missing data generation approaches in specific contexts.

The theoretical flaws may compromise/constraint the pos-
sible MRs to generate; nevertheless, this problem is easy to
diagnose and, although the desired percentage of missing
values may not be achieved, there is no risk of breaking the
assumptions regarding the missing mechanisms. Regarding
the identified empirical flaws, it is important to state that
they are mostly related to the existence of qualitative features
with no order (nominal features), which is very common
across several domains [3], [36]. This is the most challenging
topic to solve in related work and is most often neglected.
With the exception of Zhu et al. [21] and Pan et al. [22],
which distinguish between ordered and nominal features,
no other work refers to this issue. This limitation becomes
more evident when using the median or percentiles/quantiles,
which require that the features have an order, although in
any implementation that requires values to be ordered (inde-
pendently of the use of median or percentiles), this problem
exists. These empirical flaws are more serious since they may
bias the missing mechanism. The experimental setup hazards
are unrelated to the described approaches, but they might
be induced inadvertently by the researcher during the study.
Therefore, they will not affect certain aspects of the im-
plementation (faulty MR rate, broken missing mechanism),
but they may compromise the derived insights for certain
implementations, if there is not a careful experimental design
(e.g overlooking the stochastic process inherent to the MCAR
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unifo approaches).
Domain-based approaches are mainly developed in order

to adapt to given contexts: they arise when there is a need to
study specific situations/properties in data (Josse et al. [27],
Soares et al. [35]) or to map known relationships in data
(Johansson and Karlsson [28], Olsen et al. [29]), or they may
also reflect the reality of certain domains, such as healthcare
domains (Nanni et al. [30]), software management (Song
and Shepperd [26]) and traffic data (Deb and Liew [31]). A
standard approach in this case is to generate missing values
per pattern, rather than per feature. This is a way of traducing
the reality in these domains: as an example, in medical
datasets, it is not expected that certain features are absent
for all patients, but instead, that several patients have absent
observations in some features [3]. Although some of these
approaches are not generalisable, we have decided to present
them since they represent valid approaches in certain contexts
and might inspire other approaches for similar domains.

Finally, we shall refer to some potential research directions
in the field:

• Generating MAR and MNAR with nominal features:
The definition of appropriate strategies to generate
MAR and MNAR data with nominal features would be
important, since most strategies proposed so far may fail
under certain circumstances;

• Generating MAR through data modelling: In the
reviewed works, MAR either makes use of one deter-
mining feature, or pairs of features where one in the pair
is the determining feature. Future research could explore
the effects of generating MAR via the combination of all
features in data (except for the missing features);

• Investing in software development: Nowadays, a great
number of statistical software (SPSS, R, MatLab) con-
siders the development of models with missing data and
procedures for MD imputation. Nevertheless, strategies
for MD generation are most often neglected;

• Experimenting over real-world datasets: Investigat-
ing the reliability and consistency of the methods out-
lined in this work on a large benchmark of real-work
datasets (available from UCI or Kaggle repositories
[37], [38]), comprising different domains, number of
samples, number (and type) of features and distributions
could prove beneficial to the literature.
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