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Abstract—Although cross-validation is a standard procedure
for performance evaluation, its joint application with oversam-
pling remains an open question for researchers farther from the
imbalanced data topic. A frequent experimental flaw is the appli-
cation of oversampling algorithms to the entire dataset, resulting
in biased models and overly-optimistic estimates. We emphasize
and distinguish overoptimism from overfitting, showing that the
former is associated with the cross-validation procedure, while
the latter is influenced by the chosen oversampling algorithm.
Furthermore, we perform a thorough empirical comparison of
well-established oversampling algorithms, supported by a data
complexity analysis. The best oversampling techniques seem to
possess three key characteristics: use of cleaning procedures,
cluster-based example synthetization and adaptive weighting
of minority examples, where Synthetic Minority Oversampling
Technique coupled with Tomek Links and Majority Weighted
Minority Oversampling Technique stand out, being capable of
increasing the discriminative power of data.

I. INTRODUCTION

Imbalanced Data (ID) occurs when there is a considerable
difference between the class priors of a given problem. Con-
sidering a binary classification problem, a dataset is said to
be imbalanced if there exists an under-represented concept
(a minority class) when compared to the other (a majority
class) [1]. Prediction models built from imbalanced datasets
are most often biased towards the majority concept, which is
especially critical when there is a higher cost of misclassifying
the minority examples, such as diagnosing rare diseases [2].

Approaches to handle imbalanced scenarios can be mainly
divided into data-level approaches, where the data is prepro-
cessed in order to achieve a balanced dataset for classification,
and algorithmic-level approaches, where the classifiers are
adapted to deal with the characteristic issues of imbalanced
data [3]–[6]. By far, data-level approaches are the most com-
monly used, as they have proven to be efficient, are simple
to implement and completely classifier-independent [2], [7].
Data-level strategies fall into two main categories, under-
sampling and oversampling: the former consists in removing
majority examples while the latter replicates the minority
examples. Researchers often invest in oversampling procedures
since they are capable of balancing class distributions without
ruling out potentially critical majority examples [8].

Cross-validation (CV) is a standard procedure to evalu-
ate classification performance; yet, its joint application with
oversampling raises some questions for researchers farther
from the imbalanced data community. Some researchers not

familiarised with the topic tend to misunderstand some aspects
of a standard experimental setup in imbalanced domains. One
of their frequent misconceptions relates to the joint-use of
CV and oversampling algorithms: oversampling seems to be
applied to the entire original data, and only then the cross-
validation and model evaluation is performed [9]–[12]. This
misconception naturally leads to building biased models and
producing overoptimistic error estimates (examples of these
situations will be illustrated in Section III).

In traditional CV, the entire dataset is initially partitioned
into k folds, where k-1 folds are used to train the prediction
model and the left-out fold is used for testing. The folds then
rotate so that all folds are used for training and testing the
model, and the final performance metrics are averaged across
the k estimates of each test fold. This process assures that
k independent sets are used to test the model, simulating
unseen data: the test set is never seen during the training of
the model, to avoid overfitting the data. Incorrectly applying
oversampling while performing CV may derive into two main
issues: overoptimism and overfitting, as we proceed to explain.

Regarding the issue of overoptimism, consider Approach
1 (CV after Oversampling) and Approach 2 (CV during
Oversampling) as depicted in Fig. 1. In the first approach
(Approach 1) we design a cross-validation setup prone to
overoptimism: the entire dataset is first oversampled to achieve
a 50-50 distribution between classes and the cross-validation
is applied afterwards. In this scenario, it is possible that copies
of the same patterns appear in both the training and test sets,
making this design subjected to overoptimism (Fig. 1 - CV
after Oversampling). In the second approach (Approach 2), the
oversampling procedure is performed during cross-validation:
the dataset is first divided into k stratified partitions and only
the training set (corresponding to k − 1 partitions) is over-
sampled (Fig. 1 - CV during Oversampling). In this scenario,
the patterns included in the test set are never oversampled
or seen by the model in the training stage, thus allowing a
proper evaluation of the model’s capability to generalize from
the training data.

Regarding the issue of overfitting, some researchers directly
associate it to all oversampling procedures, while others refer
to the overoptimistic results of a CV approach as “overfitting”,
which confuses both concepts and hinders their identification.
For this reason, we here distinguish both ideas and explain
how they relate to CV and oversampling approaches, providing
some examples:
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Fig. 1. Different cross-validation approaches: CV after oversampling (left) and CV during oversampling (right). When the cross-validation is implemented
after oversampling is applied, similar patterns may appear in both training and test partitions (marked in the schema with an asterisk), leading to overoptimistic
error estimates. When the cross-validation is applied during oversampling, only the training patterns are considered both for generating new patterns and
training the model, avoiding overoptimism. In both approaches, similar or exact copies may appear in the training partitions, leading to overfitting, which is
surpassed by an appropriate choice of oversampling technique.

• Overfitting occurs when the classifier is “tightly fitted”
to the training data points, and therefore loses its gen-
eralization ability for the test data. Because of this, the
classification performance is lower in the test set when
compared to the training set. In this context, overfitting
is usually associated to oversampling techniques that
generate exact replicas of training data patterns (e.g.
Random Oversampling - ROS), causing an overfit of the
model in its learning stage.

• Overoptimism occurs when exact or similar replicas of a
given pattern exist in both the training and test sets (well
represented in Fig. 1 - CV after Oversampling). In this
case, the classification performance in the test sets will
be similar to the one obtained in the training sets, not
because the model is able to correctly generalize to the
test data, but rather because there are similar patterns in
both training and test partitions. In this context, overopti-
mism is associated to incorrect implementations of cross-
validation approaches, when oversampling is used.

As an example, consider that we divided a dataset into five
equal folds. If we considered four partitions for training and
applied the ROS algorithm, exact replicas of existing minority
patterns would be generated: the classifier could be so exagger-
atedly fitted to the training data that it would misclassify the
test patterns (overfitting occurs). On the other hand, imagine

that we considered all five partitions to perform oversampling,
creating similar patterns rather than exact replicas. Although
we are not using a technique prone to overfitting, we are
considering all the data points in the oversampling procedure
and therefore the probability that similar patterns are both in
the training and test partitions increases (Fig. 1). In this case,
we are in the presence of an overoptimistic approach.

The importance of a proper cross-validation approach in
imbalanced domains was first emphasized by Blagus and Lusa
[13]. They have evaluated the bias introduced in Classifi-
cation and Regression Trees (CART) when cross-validation
and sampling techniques – random undersampling, random
oversampling and Synthetic Minority Oversampling Technique
(SMOTE) – are jointly used. The results showed that incorrect
CV achieved overly-optimistic estimates for random oversam-
pling and SMOTE, while random undersampling produced ac-
curate predictions, resilient to the change of CV procedure. Al-
though this work provides an interesting take on the problem,
some questions remained unanswered from the experimental
setup. The number of real-world datasets used was rather small
(10 datasets) and there was not much variability in terms of
sample size. Therefore, although authors claimed that a higher
bias (overoptimistic effects) was observed for smaller datasets,
the lack of variability does not allow a complete analysis:
in this work, we use a larger number of real-world datasets



(86 datasets) to provide a thorough evaluation of this topic.
Blagus and Lusa [13] also refer that the bias is marginal when
the prediction task is “easy”, without supporting this claim
with any type of complexity measures: we therefore explore
well-established data complexity measures to characterize the
difficulty of each dataset. Furthermore, the following novel
analyses are included:

• Determine whether Imbalance Ratio (IR) influences the
classification bias (overoptimistic effects);

• Evaluate incorrect versus correct CV approaches from a
complexity perspective, by analysing the data complexity
in training and test partitions;

• Analyse a higher number of oversampling algorithms, in
order to compare their inner procedure, determine how
they handle data complexity and assess which are more
subjected to overfitting and which provide the highest
classification improvement.

Motivated by the topics presented above, the purpose of this
work is as follows:

(i) To fully characterize the risk of overoptimism when CV
and oversampling algorithms are used, extending the
work of Blagus and Lusa [13], as previously described;

(ii) To distinguish the problem of overoptimism from the
overfitting problem, including a novel analysis on the risk
of overfitting and on the influence of data complexity on
classification results;

(iii) To study the behavior of 15 well-established oversam-
pling algorithms and their influence on classification
performance, providing a thorough analysis of their inner
procedure.

In this way, the contribution of this research is two-fold.
First, it details important aspects on how to properly address
imbalanced data problems, so that researchers farther from
the imbalance topic or new researchers in the field truly
understand the nature of the problem and acknowledge the
most correct validation procedures and promising resampling
techniques. Secondly, for researchers familiarised with the im-
balanced data field, it provides a thorough empirical analysis of
a comprehensive set of oversampling techniques, focusing on
their behavior/inner procedure and strengths/faults, supported
by a data complexity analysis.

The structure of the manuscript is as follows: Section
II presents some background knowledge on oversampling
techniques, complexity measures and performance measures.
Then, Section III presents recent works that make use of
overoptimistic cross-validation procedures. The experimental
setup is described in Section IV, while the experimental results
are discussed in Section V. Finally, Section VI summarises
the conclusions of the work and refers to some directions for
future work.

II. BACKGROUND KNOWLEDGE

This section reviews some background information that sup-
ports the different stages of this work, regarding oversampling
algorithms, complexity metrics and performance metrics.

A. Oversampling Algorithms

1) ROS: Random Oversampling (ROS) is the simplest of
oversampling techniques, where the existing minority exam-
ples are replicated until the class distribution is balanced. This
approach is often criticised since it does not introduce any new
information to the data (the oversampled examples are mere
copies of the original data points) and may lead to overfitting
(even if CV is performed properly) [14].

2) SMOTE: Synthetic Majority Oversampling Technique
(SMOTE) works by generating synthetic minority examples
along the line segments joining randomly chosen G minority
examples and their k-nearest minority class neighbors [15]. G
is the number of minority examples to oversample in order
to obtain the desired balancing ratio between the classes, and
along with the value of k, it can be specified by the user.
SMOTE will then generate a new synthetic sample s according
to s = x + ϕ(x − v), where x is the minority sample to
oversample, v is one of its chosen nearest neighbors and ϕ is
called a gap, in this case, a random number between 0 and
1. By generating similar examples to the existing minority
points, SMOTE creates larger and less specific decision bound-
aries that increase the generalization capabilities of classifiers,
therefore increasing their performance.

3) ADASYN: Instead of producing an equal number of
synthetic minority instances for each minority example, the
Adaptive Synthetic Sampling Approach (ADASYN) algo-
rithm, proposed by He et al. [16], specifies that minority
examples harder to learn are given a greater importance, being
oversampled more often. ADASYN determines a weight (wi)
for each minority example, defined as the normalized ratio of
majority examples Ni among its k nearest neighbors: wi =
Ni

k×z where z is a normalization constant. Then, the number
of synthetic data points to generate for each minority example
is specified as gi = wi × G, being G the total necessary
number of synthetic minority samples to produce according
to the required amount of oversampling. The oversampling
procedure is the same as SMOTE; the only difference is that
harder minority examples are replicated more often.

4) Borderline-SMOTE: Based on the same idea of provid-
ing a more clear decision boundary, Han et al. [17] suggested
two new variations of SMOTE – Borderline-SMOTE1 and
Borderline-SMOTE2 – in which only the minority exam-
ples near the borderline are considered for oversampling.
Borderline-SMOTE first considers the division of the minority
examples into three mutually exclusive sets: noise, safe and
danger. This division is made by considering the number of
majority examples m′ found among each minority example’s
k nearest neighbors. Thus being, if m′ = k, all the nearest
neighbors of a minority data point pi are majority examples,
and pi is considered noise; conversely, if k

2 > m′ ≥ 0,
pi is considered safe while if k > m′ ≥ k

2 , pi is sur-
rounded by more majority examples than minority ones (or
surrounded by exactly the same number), and therefore is
considered danger. The “danger” data points are considered the
minority borderline examples, and only them are oversampled,
following a SMOTE-like procedure. For Borderline-SMOTE1
new synthetic examples are created along the line between



the danger examples and their minority nearest neighbors;
Bordeline-SMOTE2 uses the same procedure as Borderline-
SMOTE1, but further considers the nearest majority example
of each danger data point to produce one more synthetic
example: the distance between each danger point and its
nearest majority neighbour is multiplied by a gap between
0 and 0.5 so that the new point falls closer to the minority
class, thus strengthening the minority borderline examples.

5) Safe-Level-SMOTE: Contrary to Borderline-SMOTE,
the technique proposed by Bunkhumpornpat et al. [18],
called Safe-Level-SMOTE, only synthesizes minority exam-
ples around safe regions. To specify a safe region, a coefficient
named safe level ratio (slratio) is defined, which is the ratio
between the number of minority examples found among each
minority example’s (p) k nearest neighbors, slp, and the
number of minority examples found among a randomly chosen
neighbor’s (n) k-neighborhood, sln. Depending on the slratio
of a given minority example, five different scenarios may be
applied to the SMOTE-based generation: if both slp and sln
are 0, no oversampling occurs; if slp > 0 and sln = 0,
then the SMOTE’s gap is set to 0 (the minority example
is duplicated); if slratio = 1, the gap is as in the original
formulation of SMOTE (rand(0, 1)); if slratio > 1, the gap
is set to rand(0, 1

slratio
) so that the new example is generated

closer to the minority example p and finally, if slratio < 1,
the gap is set to rand(1 − slratio, 1) so that, conversely, the
new example is generated closer to the nearest neighbor n.

6) SMOTE+TL: SMOTE + Tomek Links (SMOTE+TL)
also works on the basis of creating clear safe regions, by
applying Tomek links after the data is oversampled with
SMOTE [14]. A Tomek link is defined as a pair of examples
from different classes, one from the minority class and the
other from the majority class, (xi, xj), that are each other’s
closest neighbors [19]. In this technique, SMOTE is first
applied to oversample the minority examples; then, the Tomek
links are identified and both data points of each pair are
removed.

7) SMOTE+ENN: Similar to SMOTE+TL, SMOTE+ENN
first generates synthetic examples from the minority class
(through SMOTE), from which a process of data cleaning
follows, using the Wilson’s Edited Nearest Neighbour Rule
(ENN). ENN removes any example (either minority or ma-
jority examples) whose class differs from at least two of its
three nearest neighbors [20]. By removing the examples that
are misclassified by its three nearest neighbors, SMOTE+ENN
provides a deeper data cleaning than SMOTE+TL [14].

8) ADOMS: Adjusting the Direction Of the synthetic Mi-
nority clasS examples (ADOMS) algorithm combines SMOTE
with Principal Component Analysis (PCA) to produce new
synthetic minority examples along the first principal com-
ponent of the data surrounding each minority example [21].
For each minority example to replicate, ADOMS searches for
its k-nearest minority class neighbors and performs PCA to
determine the first principal component axis of the local data.
The generation of the new example is done in a SMOTE-
like fashion, but instead of being placed along the line that
joins a minority example and one of its k nearest neighbors,

it is placed along the first principal component axis of its k-
neighborhood.

9) CBO: Jo and Japkowicz [22] propose an oversampling
approach that simultaneously handles the between-class im-
balance (imbalance between different classes) and the within-
class imbalance, where a single class may comprise sub-
clusters that hinder the learning process of algorithms. Their
approach is called Cluster-Based Oversampling (CBO) and
uses k-means clustering to guide the oversampling procedure.
First, k-means is applied to each class to find the existing
sub-clusters; then, the majority class is oversampled - each
sub-cluster of the majority class is inflated until it reaches the
size of the largest majority sub-cluster. Finally, the minority
class is oversampled: each sub-cluster is oversampled until it
reaches the size Nmaj/Ncmin, where Nmaj is total number
of majority examples after oversampling and Ncmin is the
number of minority class clusters. Different oversampling
approaches may be coupled with CBO algorithm: this work
makes use of the Random Oversampling (CBO + ROS), as
proposed by Jo and Japkowicz in the original paper [22] and
SMOTE (CBO + SMOTE), as discussed by He and Garcia
[1].

10) AHC: Cohen et al. propose an oversampling approach
based on Agglomerative Hierarchical Clustering (AHC) [23].
In this approach, the minority examples are clustered using
AHC with both the single and complete linkage rules in
succession, so that the produced clusters may vary. Then, fine-
grained clusters are retrieved from all levels of the generated
dendrograms and their centroids (prototypes) are determined.
The process of synthetic data generation is based on introduc-
ing the computed cluster prototypes as new samples from the
minority class, until a complete balance is achieved.

11) MWMOTE: Similarly to ADASYN and Borderline-
SMOTE, the Majority Weighted Minority Oversampling Tech-
nique (MWMOTE) also works on the basis of generating syn-
thetic samples in specific regions, where the minority examples
are harder to learn [24]. MWMOTE starts by identifying the
harder-to-learn minority examples (Simin), so that each is
given a selection weight (Sw), according to their distance to
the nearest examples belonging to the majority class. These
weights are then converted into selection probabilities, Sp, that
will be used in the oversampling stage. To generate the new
synthetic samples, the complete set of minority class examples
Smin is clustered into M groups. Then, a minority example
x from Simin is selected according to the probability Sp, and
another random minority example in Smin that belongs to the
same cluster of x is used to generate a new synthetic sample
in the same way as SMOTE. This approach is performed as
many times as required, according to the necessary number N
of synthetic samples to be generated for complete balance.

12) SPIDER: Stefanowski and Wilk propose an algorithm
that uses the characteristics of examples to drive their oversam-
pling: Selective Pre-Processing of Imbalance Data (SPIDER)
[25]. SPIDER comprises two stages: first, each example is
categorized into “safe” or “noisy”, according to the correct or
incorrect classification result returned by its k-neighborhood,
respectively (k = 3 in the original formulation).

Then, an amplification strategy must be specified by the



user: either “weak amplification”, “weak amplification with
relabeling” or “strong amplification”. If weak amplification is
chosen, the noisy minority examples are amplified (copied) as
many times as there are safe majority examples in their k-
neighborhood (k = 3). “Weak amplification with relabeling”
allies the amplification of noise minority examples described
before with a relabeling procedure: noisy majority examples
surrounded by noisy minority examples (considering k = 3),
are relabeled to the minority class. The “strong amplification”
technique processes both the noisy and safe minority exam-
ples. It starts by amplifying the safe examples by producing
as many copies as there are safe majority examples in their
3-nearest neighborhood and then considers the noisy minority
examples and reclassifies them according to a larger neighbor-
hood (k = 5). If an example is correctly classified, it suffers
a standard weak amplification; otherwise, it is more strongly
amplified, by considering a 5-nearest neighborhood. Finally,
for any type of amplification chosen, the noisy examples
of the majority class are removed (in the case of “weak
amplification with relabeling”, only the un-relabelled noisy
majority examples are removed).

SPIDER2 is a modification of SPIDER that performs the
pre-processing of minority and majority examples in two
separate stages [26]. It maintains the choice to perform a weak
or strong amplification for the minority examples; while for the
majority examples it is possible to decide whether relabeling is
required or not. SPIDER2 starts by categorizing the majority
examples into “safe” or “noisy” and if the relabeling option is
chosen, the noisy majority examples are relabeled; otherwise,
they are removed. Then, the minority examples are also
divided into “safe” or “noisy” and the amplification proceeds
according to the chosen technique (weak or strong), which are
the same as above.

B. Data Complexity Measures
Ho and Basu [27] proposed several complexity measures

that regard essentially three properties of datasets: geom-
etry/topology, class overlapping and boundary separability
(Table I).

TABLE I
COMPLEXITY MEASURES DESCRIPTION.

Measure Description Higher Data
Complexity

F1 Highest value of Fisher’s Discriminative
Ratio (among all features) −−

F2 Highest volume of overlap between classes
(among all features) ++

F3 Maximum feature efficiency (among all
features) −−

L1 Minimised error of a linear classifier (linear
SVM) ++

L2 Error rate (training set) of a linear classifier
(linear SVM) ++

N1 Fraction of points on boundary by MST ++

N2 Ratio of average intra-class and inter-class
scatter ++

N3 Error rate of nearest neighbour classifier
(KNN, k=1) ++

L3 Nonlinearity of linear classifier (linear SVM) ++

N4 Nonlinearity of a nearest neighbour classifier
(KNN, k=1) ++

1) Geometry and Topology: L3 and N4 measure the nonlin-
earity of a linear classifier and a nearest-neighbour classifier,
respectively. L3 returns the error of a Support Vector Machine
(SVM) [28] with linear kernel in a test set created by linear
interpolation of randomly selected pairs of examples from
the same class. N4 constructs a test set in the same way
as for L3 and returns the test error for a nearest-neighbor
classifier. Higher values of these measures indicate more
complex classification problems.

2) Overlapping of Individual Feature Values: F1, F2 and F3
focus on the ability of a single feature to distinguish between
classes [27]. F1 measures the highest discriminative power
of all features in data (higher discriminative power indicates
lower complexity), F2 measures the highest volume of overlap
between the classes’ conditional distributions (if there is no
overlap in at least one feature, F2 will be zero), and F3
measures feature efficiency, the fraction of points where the
values spanned by each class do not overlap (higher fractions
indicate easier classification problems).

3) Class Separability: L1, L2, N1, N2 and N3 focus on
the characteristics of the boundary between classes [29]. L1
and L2 measure to what extent the training data is linearly
separable using an SVM with linear kernel [30]: if a classifi-
cation problem is linearly separable, then L1 is zero and L2 is
the training set error rate. N1 measures the fraction of points
connected to the opposite class by an edge in a Minimum
Spanning Tree (MST) and it can achieve high values when the
classes are interspersed (higher complexity) or when the class
boundary has a narrower margin than the intra-class distances
(lower complexity). However, for the datasets used in this
research, we observed that the first scenario is often the case,
and for that reason we have associated higher values of N1
to a higher complexity in Table I. N2 measures the trade-off
between the within-class spread and the between-class spread.
In an easy classification problem, the within-class scatter
should be low and the between-class scatter should be high;
nevertheless, the denominator (between-class scatter) greatly
influences N2 values: we, therefore, consider that higher values
of N2 (smaller between-class scatter) traduce more complex
scenarios. Finally, N3 measure is the error rate of a 1-nearest
neighbor classifier (higher N3 values are associated to a higher
complexity).

Additional information on the presented complexity mea-
sures is available in the extended version of the paper (https:
//eden.dei.uc.pt/∼pha/Long-version-CIM.pdf).

C. Performance Metrics for Imbalanced Scenarios

Accuracy (ACC) measures the percentage of cor-
rectly classified examples and is computed as ACC =

TP+TN
TP+FN+FP+TN , where TP and TN are the true positives
and true negatives and FP and FN are the false positives
and false negatives. Given that ACC is biased towards the
majority class [28], alternative metrics should be considered,
such as Sensitivity, Specificity, Precision, F-Measure, G-mean
and the Area Under the Receiver Operating Characteristics
(ROC) Curve (AUC) [1]. Sensitivity (SENS) is calculated as
SENS = TP

TP+FN and measures the percentage of positive



examples correctly classified, while Specificity (SPEC) refers
to the percentage of negative examples correctly identified
and can be computed as SPEC = TN

TN+FP . Precision
(PREC) corresponds to the percentage of positive examples
correctly classified, considering the set of all the examples
classified as positive, PREC = TP

TP+FP . F-measure, G-
mean and AUC represent the trade-off between some of the
metrics described above. F-measure (F-1) shows the com-
promise between sensitivity and precision, obtained through
their harmonic mean, F -1 = 2×PREC×SENS

PREC+SENS while G-mean
represents the geometric mean of both classes’ accuracies,
G-mean =

√
SENS × SPEC. At last, AUC makes use of

the ROC curve to exhibit the trade-off between the classifier’s
TP and FP rates [31].

III. RELATED WORKS

This section presents a series of related works aiming
to show that the less the work is related to learning from
imbalanced data, the more likely the cross-validation (CV)
procedure is poorly designed. Thus, related works were di-
vided into three main categories: “Learning from imbalanced
data”, “Comparing approaches in a specific context” and
“Solving a classification problem”. The “Learning” category
includes research works focused on performing extensive
experiments to evaluate diverse sampling techniques [32]–[38].
Typically, these works include a large number of publicly
available datasets and a comprehensive set of learners and
sampling algorithms. “Comparison” category works perform a
comparison of oversampling approaches in a specific context:
these works normally include a lower number of datasets and
sampling strategies. “Classification” category comprises works
where the main objective is to solve a particular classification
problem and the imbalanced nature of data is not the focus.
The extended version of this paper (https://eden.dei.uc.pt/
∼pha/Long-version-CIM.pdf) provides additional information
on related works, including a table that summarises their
main characteristics. All works included in the “Learning”
category, except one, perform a well-designed CV procedure,
where the training and test partitions are determined before
any oversampling technique is applied. As we move towards
research works whose objective is not to provide a general
review on ways to deal with the data imbalance problem,
we find a larger number of works where the CV procedure
is not appropriate: the complete dataset is oversampled and
the partition into training and test is performed afterwards.
This is more evident if we consider the research works where
the main objective is to ease a classification task, rather
than studying different approaches to surpass the issues of
imbalanced datasets. It is possible that these researchers were
not completely familiarised with imbalanced data domains
and respective approaches; thus, when faced with a specific
imbalanced context, they resorted to the state-of-the-art over-
sampling approach (namely, SMOTE) to solve the issue, but
they understood it as a form of preprocessing, which created a
greater propensity for misconception during its application. We
therefore conclude that the less the work is related to learning
from imbalanced learning, the more likely the CV procedure
is poorly designed.

IV. EXPERIMENTAL SETUP

The experimental setup used in this work comprises three
main approaches: Baseline, Approach 1 and Approach 2 (Fig.
2). For the results presented as “Baseline”, the collected
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Fig. 2. Experimental setup architecture.

datasets are first divided into five stratified folds (k = 5
folds is the maximum that allowed a proper stratification)
and the classifiers are applied afterwards, without any type of
oversampling. The data complexity measures and performance
metrics for the original training and test sets are then retrieved.
In Approach 1, the original datasets are oversampled and
the CV and performance evaluation are performed afterwards.
The data complexity measures (for oversampled training and
test sets) are then retrieved. In Approach 2, oversampling is
performed during CV: the original datasets are first divided
into five folds (same folds as for the Baseline), and only the
training partitions are oversampled. The classifiers are then
trained with the oversampled training folds and tested in the
respective original test folds. In this case, the data complexity
measures are only determined for the oversampled training
sets, since the data complexity of the test sets is the same as
obtained from the Baseline method.

With this setup we aim to perform 3 main analysis: (i)
compare the differences in classification performance between
Approaches 1 and 2, in order to explain the risk of overopti-
mistic error estimates, (ii) distinguish between overoptimistic
and overfitting approaches in imbalanced scenarios that con-
sider oversampling and (iii) determine which oversampling
approach is the most appropriate to solve the imbalance
problem, obtaining the best average results for all the different
contexts (datasets) considered in this study.

Regarding the process of data collection, the 86 datasets
used in this work were collected from two online repositories,
UCI Machine Learning Repository (http://archive.ics.uci.edu/



ml) and KEEL – Knowledge Extraction based on Evolutionary
Learning (http://www.keel.es). The choice criteria included
the following parameters: complete datasets, regarding binary
classification problems, with a variable sample size, number of
features and IR. Their main characteristics are summarised in
Table II. As a note worth mentioning, although the variability
of datasets considered in this work is considerable, especially
in comparison to the precursor work of Blagus and Lusa [13],
we would like to point out that the conclusions drawn in this
research refer to datasets with low dimensionality (4-34 fea-
tures). The interested readers may find additional information
on the data collection stage in the extended version of this
paper (https://eden.dei.uc.pt/∼pha/Long-version-CIM.pdf).

V. RESULTS AND DISCUSSION

In this section, we start by comparing Approaches 1 and
2 regarding their risk of overoptimism/overfitting. Then, we
move to an analysis on data complexity and the inner charac-
teristics of each oversampling method.

A. Approach 1 versus Approach 2: Evaluating the risk of
overoptimism and overfitting

To evaluate the issues of overoptimism and overfitting
regarding the joint-use of CV and oversampling approaches,
we started by comparing the performance results of Approach
1 and Approach 2 (please refer to the extended version
of this paper (https://eden.dei.uc.pt/∼pha/Long-version-CIM.
pdf). The results confirmed that the performance outputted by
Approach 1 is more optimistic: the mean test values of the
various performance metrics (AUC, G-mean, F-1 and SENS)
was always higher in Approach 1 (see extended version).
Since the behavior observed for both Approaches is consistent
for all performance metrics, we will refer only to the AUC
values in the following analyses, in order to provide a base of
comparison with previous works, which largely use AUC. Fig.
3 shows the AUC values (training and test partitions) obtained
for the original datasets (Baseline) and for the oversampled
datasets, considering both Approaches 1 and 2. Furthermore,
Table III presents the absolute differences between AUC
values of training and test partitions, for both Approaches
(listed in descending order of differences in Approach 2). The
p-values derived from a Mann-Whitney test are also included
and confirm that the train-test differences between Approaches
1 and 2 are significantly different. In the extended version of
this paper, the interested reader may find additional statistical
tests for training and test partitions individually, and a table of
10 representative datasets for which the classification results
are discussed in detail.

As shown in Fig. 3, the training results are similar, which
suggests that the major difference between both approaches
relies on the characteristics of the test sets. In Approach 1, it
is the overoptimism problem (rather than the overfitting) that
is identified, given that the difference between training and
test results is not considerable (Table III). In this scenario, the
test sets have similar characteristics to the training sets (are
balanced and may contain exact replicas or similar patterns
to the training points). From Table III, it can be observed

that for Approach 1, the best methods often include CBO and
ROS. CBO+Random and ROS create exact replicas of existing
data points, and since the division (i.e., CV) is performed
after the oversampling procedure in the entire dataset, the
probability that exact replicas exist in both the training and
test sets increases, thus producing better results. In the case
of CBO+SMOTE, although SMOTE creates synthetic exam-
ples, it does so by inflating the clusters defined by k-means
algorithm, which may reduce the data variability introduced
in the dataset. Therefore, patterns in the test sets may also be
similar to the ones comprised in the training sets.

In Approach 2, the difference between the results of the
training and test sets is more accentuated: in this scenario, the
test sets follow the same distribution as the original dataset
and its patterns are never considered in the oversampling or
training phases. As a result, overoptimism does not appear
in this scenario. However, some overfitting effects may oc-
cur. Considering the presence of overfitting as a difference
around 0.1 between the training and test AUCs [39], it can
be observed that the great majority of oversampling meth-
ods cannot be responsible for overfitting effects. However,
some methods seem to be introducing overfitting (Table III).
CBO+Random, which obtains the worst results, seems to be
the method responsible for the highest amount of overfitting,
followed by Borderline-SMOTE and CBO+SMOTE. ROS,
SMOTE+ENN and Safe-Level-SMOTE, although in a lighter
scale, also seem to have some generalization issues, where
the difference between training and test AUCs also comes
close to 0.1. The same cannot be observed for Approach 1
given that the overoptimism problem highly dominates the
results, preventing the identification of these overfitting effects.
The tendency of CBO+Random, CBO+SMOTE and ROS to
overfit the data is somewhat intuitive: as they create exact
replicas (CBO+Random and ROS) or very similar replicas
(CBO+SMOTE by creating synthetic examples in defined
clusters) to the existing training patterns, the models tend to
overfit these training patterns and fail to generalize to different
ones. Further on, Section V-C performs a detailed analysis of
Approach 2, reviewing the advantages and disadvantages of
each oversampling algorithm, allowing the understanding of
why Borderline-SMOTE and Safe-Level-SMOTE may present
generalization issues (which also explains their poor perfor-
mance). The major issue of these methods is that the definition
of danger/borderline examples (Borderline-SMOTE) and safe
examples (Safe-Level-SMOTE) may fail in certain scenarios
and prejudice the classification task (inability to generalize).
Finally, SMOTE+ENN shows a training/test difference of
0.096, which is considerable when compared to its analogous
SMOTE+TL (0.091) and precursor SMOTE (0.087). Both
methods (SMOTE+ENN and SMOTE+TL) were developed to
surpass the issues of overgeneralization of SMOTE. However,
as will be discussed further on (Section V-C), the ability
of SMOTE to create larger decision boundaries seems to
be a major strength, whereas its successor procedures seem
to create a higher risk of overfitting the training data. This
may be due to excessive cleaning applied after SMOTE. In
the case of SMOTE+TL, the issue is not critical (0.091), as
only the Tomek Links are removed. For SMOTE+ENN, the



TABLE II
CHARACTERISTICS OF IMBALANCED DATASETS.

Dataset Size Features IR Dataset Size Features IR
bupa 345 6 1.38 vowel0 988 13 9.98
pageblocks-1-3vs4 472 10 1.57 ecoli-0-6-7vs5 220 7 10.00
glass1 214 9 1.82 glass-0-1-6vs2 192 9 10.29
ecoli-0vs1 220 7 1.86 ecoli-0-1-4-7vs2-3-5-6 336 7 10.59
wisconsin 683 9 1.86 led7digit-0-2-4-5-6-7-8-9vs1 443 7 10.97
pima 768 8 1.87 ecoli-0-1vs5 240 7 11.00
cmc1vs2 961 9 1.89 glass-0-6vs5 108 9 11.00
iris0 150 4 2.00 glass-0-1-4-6vs2 205 9 11.06
glass0 214 9 2.06 glass2 214 9 11.59
german 1000 20 2.33 ecoli-0-1-4-7vs5-6 332 7 12.28
yeast1 1484 8 2.46 cleveland-0vs4 173 14 12.31
haberman 306 3 2.78 ecoli-0-1-4-6vs5 280 7 13.00
vehicle2 846 18 2.88 shuttle-c0-vs-c4 1829 9 13.87
vehicle1 846 18 2.90 yeast-1vs7 459 8 14.30
vehicle3 846 18 2.99 glass4 214 9 15.46
glass-0-1-2-3vs4-5-6 214 9 3.20 ecoli4 336 7 15.8
transfusion 748 4 3.20 abalone9-18 731 8 16.4
vehicle0 846 18 3.25 dermatology-6 358 34 16.9
ecoli1 336 7 3.36 thyroid-3vs2 703 21 18.00
newthyroid1 215 5 5.14 glass-0-1-6vs5 184 9 19.44
ecoli2 336 7 5.46 pageblocks-1vs3-4-5 5144 10 21.27
balance scaleBvsR 337 4 5.88 shuttle-6vs2-3 230 9 22.00
balance scaleBvsL 337 4 5.88 yeast-1-4-5-8vs7 693 8 22.10
segment0 2308 19 6.02 pageblocks-1-2vs3-4-5 5473 10 22.69
glass6 214 9 6.38 glass5 214 9 22.78
yeast3 1484 8 8.10 yeast-2vs8 482 8 23.10
ecoli3 336 7 8.60 letter-U 20000 16 23.60
pageblocks0 5472 10 8.79 flare-F 1066 11 23.79
ecoli-0-3-4vs5 200 7 9.00 car-good 1728 6 24.04
yeast-2vs4 514 8 9.08 pageblocks-1vs4-5 5116 10 24.20
ecoli-0-6-7vs3-5 222 7 9.09 car-vgood 1728 6 25.58
ecoli-0-2-3-4vs5 202 7 9.10 letter-Z 20000 16 26.25
glass-0-1-5vs2 172 9 9.12 kr-vs-k-zero-onevsdraw 2901 6 26.63
yeast-0-3-5-9vs7-8 506 8 9.12 yeast4 1484 8 28.10
yeast-0-2-5-6vs3-7-8-9 1004 8 9.14 winequality-red-4 1599 11 29.17
yeast-0-2-5-7-9vs3-6-8 1004 8 9.14 poker-9vs7 244 10 29.50
ecoli-0-4-6vs5 203 7 9.15 yeast-1-2-8-9vs7 947 8 30.57
ecoli-0-1vs2-3-5 244 7 9.17 abalone-3vs11 502 8 32.47
ecoli-0-2-6-7vs3-5 224 7 9.18 yeast5 1484 8 32.73
glass-0-4vs5 92 9 9.22 kr-vs-k-threevseleven 2935 6 35.23
ecoli-0-3-4-6vs5 205 7 9.25 winequality-red-8vs6 656 11 35.44
ecoli-0-3-4-7vs5-6 257 7 9.28 abalone-17vs7-8-9-10 2338 8 39.31
yeast-0-5-6-7-9vs4 528 8 9.35 abalone-21vs8 581 8 40.50
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Fig. 3. Performance metrics (average) achieved for the original datasets (Baseline) and for the oversampled datasets, considering both Approaches 1 and 2.

issue is aggravated (0.096) due to its deeper data-cleaning
procedure. Such cleaning aims to simplify the training data
and ease the definition of less complex class boundaries,
although the results suggest that this may not be advantageous

for all scenarios: such simplification may jeopardize general-
ization. Focusing on the test AUC results, MWMOTE and
SMOTE+TL seem to be the best oversampling methods (Fig.
3).



TABLE III
AUC DIFFERENCES BETWEEN TRAINING AND TEST PARTITIONS.

Train-Test Difference Man-Whitney
Algorithm Approach 1 Approach 2 p-value
CBO+Random 0.011 0.112 9.26E-23
Borderline-SMOTE2 0.019 0.104 8.34E-18
Borderline-SMOTE1 0.020 0.104 1.31E-17
CBO+SMOTE 0.016 0.099 1.18E-17
ROS 0.018 0.097 2.17E-17
SMOTE+ENN 0.019 0.096 6.07E-16
Safe-Level-SMOTE 0.019 0.095 2.54E-16
SMOTE+TL 0.020 0.091 1.32E-14
AHC 0.023 0.089 1.36E-12
SPIDER 0.022 0.088 3.18E-17
SMOTE 0.023 0.087 2.83E-41
ADASYN 0.024 0.086 4.53E-12
ADOMS 0.024 0.085 7.92E-12
SPIDER2 0.025 0.084 6.93E-08
MWMOTE 0.025 0.084 2.69E-12
Baseline 0.069 0.069 9.94E-01

B. Data Complexity Analysis

In order to better support the existence of overoptimism in
Approach 1 (CV after oversampling), we have investigated the
complexity of the training and test partitions for all datasets,
in both Approaches 1 and 2. We hypothesize that the overop-
timism is related to the difference between training and test
partitions as explained in what follows. When oversampling
is applied before CV, the test and training partitions will have
a similar structure, and therefore their complexity is similar
- the classification is more straightforward, given that the
algorithm learns from similar contexts. When oversampling
is performed during CV, the test and training partitions, as
previously explained, have a different structure, which hinders
the classification task.

Fig. 4 shows the difference (in module) between the com-
plexity of the training and test partitions, on average, for each
approach. This is performed for all oversampling algorithms,
and the differences in complexity are also related to the mean
test AUCs for each algorithm. For the original (Baseline)
partitions, the AUC values and differences in complexity are
the same for both approaches.

From Fig. 4, it can be observed that the results are consistent
with our reasoning: the difference in complexity in Approach
2 is higher than for Approach 1. In some cases, algorithms
SPIDER and SPIDER2 show an antagonistic behavior to the
other methods, which may be due to their process of generat-
ing new data (that differs from the remaining algorithms). In
the implementation used in this work, SPIDER uses a weak
amplification strategy, where the minority class examples are
replicated according to the existence of majority data points
marked as “safe” among their k nearest neighbors. Given a
complex dataset, where there are only a few “safe” examples,
the minority examples are never oversampled. For SPIDER2,
we have used a strong amplification strategy with relabeling,
where the neighborhood to be considered is extended to
k+2, and the class of the original majority examples marked
as “noisy” is directly changed. Additionally, SPIDER and
SPIDER2 are the only methods that do not guarantee an equal
class distribution, i.e., it is not guaranteed that the resulting
dataset, after oversampling, is balanced. These differences
from the other methods could be the origin of their erratic

behavior regarding both the results of the classification and
complexity measures. The intrinsic characteristics of each
oversampling algorithm will be further discussed in Section
V-C.

We continue this section by addressing the questions raised
by Blagus and Lusa [13] that were not fully answered in their
experimental setup (please check Section I). Thus being, we
analysed the mean test AUC results for ROS and SMOTE
methods (the two oversampling methods used by Blagus and
Lusa [13]), for all datasets ordered by their sample size and
IR: from the simulation results, no relation was found with
either one. For this reason, and due to space restrictions,
this analysis is not included herein, but it is fully detailed
in the extended version of the paper (https://eden.dei.uc.pt/
∼pha/Long-version-CIM.pdf). In terms of complexity, we have
chosen to present the F1 metric (Fig. 5). The results using
other complexity measures followed the same tendency, yet
F1 seems the most straightforward to understand: it measures
the highest discriminative power considering all the features in
the dataset – if at least one feature has a high discriminative
capability (its values allow to distinguish between classes),
then the classification task is “easy”. Fig. 5 shows that the
complexity of the classification task is what most influences
the overoptimistic behavior of poorly designed CV procedures:
the less complex the classification task is, the smaller is the
difference between the CV setups (Approach 1 and Approach
2). Indeed, when the classification task is easier, the decision
boundary is clearer and Approach 2 achieves higher classifi-
cation results. Thus the difference between both approaches is
not so discrepant.

We have further conducted a regression and clustering
analysis based on all the complexity measures obtained from
the training data. For the regression analysis, we obtained a
regression model that could accurately predict the test AUC
based solely on the complexity measure of the corresponding
training partitions (R2 of 0.72), where the highest values of
the coefficient of determination were obtained for SMOTE+TL
(0.807), MWMOTE (0.798) and SMOTE+ENN (0.795). The
clustering analysis (using k-means clustering) produced a di-
vision where the top 70 datasets with the best test AUC results
are grouped, the majority are produced with MWMOTE,
SMOTE+TL and SMOTE+ENN. These results are detailed in
the extended version of the paper (https://eden.dei.uc.pt/∼pha/
Long-version-CIM.pdf).

C. Analysis of oversampling algorithms: Approach 2

After determining the most suitable CV scheme in imbal-
anced scenarios (CV during oversampling - Approach 2), we
focus on analyzing the most appropriate oversampling methods
for imbalanced contexts. To that end, three different strategies
were considered. In the first strategy, we analyze the average
test AUC values including all classifiers (Strategy 1). In the
second strategy, we rank the AUC values by the oversampling
technique, for each classifier. Then, the average rank is com-
puted for each oversampling technique (Strategy 2). Finally,
the third strategy considers the ranking of AUC values by
oversampling technique, for each classifier and dataset. Then,
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Fig. 4. Differences (in module) between the complexity measures for all oversampling techniques, considering both Approaches 1 and 2.

the average rank is computed for each oversampling technique
(Strategy 3). The results of each strategy are summarised in

Table IV.

Table IV shows that all the implemented techniques are



Fig. 5. Differences between test AUCs of Approach 1 and Approach 2: datasets are ordered by their original F1 complexity measure (highest discriminative
power among all features). Due to space restrictions, only the datasets with highest F1 values are represented, although a complete analysis is performed in
the extended version of this paper.

TABLE IV
OVERSAMPLING METHODS (PLUS BASELINE) ORDERED BY PERFORMANCE, ACCORDING TO EACH TESTED STRATEGY.

Strategy

Rank 1 2 3

1st SMOTE+TL (0.871±0.052) SMOTE (3.000±1.265) SMOTE+TL (6.535±4.094)
2nd MWMOTE (0.871±0.053) SMOTE+TL (3.167±1.941) MWMOTE (7.199±4.332)
3rd SMOTE (0.868±0.054) MWMOTE (4.333±4.844) SMOTE+ENN (7.201±4.072)
4th SMOTE+ENN (0.867±0.054) SMOTE+ENN (5.000±2.828) SMOTE (7.222±3.460)
5th AHC (0.865±0.055) AHC (6.000±2.280) ADOMS (7.606±4.195)
6th ADOMS (0.864±0.057) ADOMS (7.000±2.000) AHC (8.088±3.817)
7th ADASYN (0.862±0.059) ADASYN (8.000±2.098) ADASYN (8.215±4.223)
8th CBO+SMOTE (0.860±0.058) SL-SMOTE (8.000±6.753) SL-SMOTE (8.411±4.075)
9th B-SMOTE1 (0.858±0.060) CBO+SMOTE (9.333±5.317) B-SMOTE1 (8.743±4.119)

10th B-SMOTE2 (0.858±0.060) ROS (9.833±5.076) B-SMOTE2 (8.743±4.119)
11th SL-SMOTE (0.857±0.061) B-SMOTE1 (10.667±1.966) CBO+SMOTE (8.745±4.475)
12th SPIDER (0.856±0.059) B-SMOTE2 (10.667±1.966) ROS (9.019±4.034)
13th ROS (0.855±0.063) SPIDER (11.000±1.673) SPIDER (9.412±4.665)
14th SPIDER2 (0.855±0.059) SPIDER2 (11.833±2.137) SPIDER2 (9.569±4.764)
15th CBO+Random (0.849±0.063) CBO+Random (13.500±2.811) CBO+Random (9.821±4.419)
16th Baseline (0.848±0.066) Baseline (13.667±3.830) Baseline (11.471±4.981)

B and SL are equivalent to Borderline and Safe-Level, respectively.

better than using the original dataset without any type of pro-
cessing (Baseline). Also, all considered strategies output the
same set of winners, SMOTE+TL, SMOTE+ENN, MWMOTE
and SMOTE, although their ranks may vary. SMOTE+TL,
followed by MWMOTE, are considered the best oversam-
pling methods. The same is true for the worst oversampling
techniques, where CBO+Random, SPIDER, SPIDER2 and
ROS are found on the bottom positions. In light of these
results, we herein provide a detailed discussion on the intrinsic
characteristics and behavior of the different oversampling
methods used. We compare each method in what concerns

their inner procedure and how they are able to address the
datasets’ complexity and improve the classification results,
also highlighting their main advantages and disadvantages.

1) ROS and SMOTE: ROS is the simplest of the oversam-
pling techniques: a random subset of minority examples is
replicated until the desired balance is reached. Nevertheless,
this technique is subjected to overfitting due to the replication
(creation of exact copies) of minority examples. The fact
that ROS creates exact copies of existing examples, leads to
a generation of very similar partitions in Approach 1 (and
consequent overoptimism), while in Approach 2, as explained
in Fig. 3, ROS is mostly subjected to overfitting. This is also



supported by Fig. 4, where ROS is among the best methods in
Approach 1 (between 0.938 and 0.952), while for Approach 2
it provides the worst AUC results (between 0.848 and 0.857).

SMOTE smooths the problem of creating exact copies of
existing minority examples by creating synthetic minority
instances using the k-neighborhood of minority examples.
However, the minority class is augmented without considering
the structure of data: all minority examples have the same
probability of being oversampled, regardless of their neigh-
borhood, which leads to the following issues [7], [24], [40]:
• By considering a neighborhood composed only of minor-

ity examples, the new synthetic examples may be gener-
ated in overlapping areas (problem of overgeneralization);

• Since no distinction between minority examples is per-
formed (e.g. by evaluating their majority neighborhood),
SMOTE-like methods can also augment noise regions,
by oversampling noisy examples (minority examples sur-
rounded by majority examples, that are most likely noise).

Nevertheless, it seems that the ability of SMOTE to generate
larger decision boundaries is still a major strength, even with
its susceptibilities. In fact, SMOTE is found among the best
oversampling methods, as shown in Fig. 4, which justifies why
it is a renowned oversampling method, widely used in several
research areas [40], [41].

2) SMOTE+TL and SMOTE+ENN: SMOTE+TL and
SMOTE+ENN combine oversampling with a cleaning proce-
dure that alleviates SMOTE’s problem of overgeneralization:
they are able to remove examples that lie on overlapping
regions (as detailed in Section II-A). However, since SMOTE
is applied prior to the cleaning procedure, some of the same
issues from SMOTE remain:
• All minority examples have the same probability of

being oversampled, causing some unnecessary (“safe”)
examples to be oversampled;

• Noise minority regions could be augmented and remain
after the cleaning procedure: after oversampling, they
may not be identified by Tomek Links or ENN as
examples to remove, since their neighborhood is changed.

Nevertheless, what is true for noise regions, is also true for
small disjuncts. SMOTE+TL and SMOTE+ENN, by applying
SMOTE as a first step, may be inflating unnecessary noise
regions, but may also be inflating important, underrepresented,
minority points. Overall, our results show that combining
SMOTE with these cleaning methods turns out to be a superior
approach than most (Table IV): SMOTE creates larger and
less specific decision boundaries, that are afterwards simplified
by Tomek Links and ENN by removing several borderline
examples while also alleviating the issue of small disjuncts.
However, some caution must be taken regarding the cleaning
procedure: as discussed from Table III, for some datasets, an
excessive cleaning may be the cause of overfitting.

3) CBO+Random and CBO+SMOTE: CBO was first
thought as a way of handling both the between-class imbalance
as well as the within-class imbalance (small disjuncts). CBO
is able to attend to the structure of data by performing
clustering on both classes individually (both minority and
majority example are oversampled). Nevertheless, CBO needs

a procedure for the generation of new examples, and each has
its hitches:

• CBO+Random is more prone to overfitting: since random
oversampling is performed within clusters, the probability
that similar instances are oversampled more often is even
greater than for ROS alone, as discussed in Fig. 3 and
Table III;

• CBO+SMOTE eases the problem of overgeneralization
given that SMOTE is performed within clusters; however,
it no longer takes advantage of SMOTE’s ability to create
larger decision regions, which explains why its perfor-
mance is considerably lower than SMOTE’s (Table IV):
applying SMOTE within clusters increases the probability
that similar instances are generated, which can also result
in overfitting, as discussed from Table III.

Finally, for both techniques, the definition of the most
appropriate number of clusters is a problem. In this work, to
find the optimal k number of clusters for each class, we have
used three evaluation criteria: Calinski-Harabasz [42], Davies-
Bouldin [43] and Silhouette [44], and a range of k = 2, ..., 20.
Our CBO computes for each criterion five times and extracts
the mode of these five runs. Finally, after determining the
optimal k according to each criterion, the mode is computed
again to obtain the final optimal k for a given class.

4) Borderline-SMOTE and ADASYN: Defining a taxon-
omy of minority examples (noise, safe and danger) allows
Borderline-SMOTE to operate only on the examples of in-
terest: the synthetic minority examples will be created in a
SMOTE-like fashion, along the line that joins each danger
example to its k nearest minority neighbors, thus strengthening
the borderline examples. Nevertheless, as Borderline-SMOTE
uses the same procedure as SMOTE to oversample minority
examples, it may suffer from the same issues mentioned above.
Additionally, another problem with Borderline-SMOTE tech-
nique is in the way danger/borderline examples are identified
(see Section II-A): in some contexts, the k > m′ ≥ k

2
criterion may fail, and in those cases there is no oversampling
in important regions near the decision boundary, which will
prejudice the classification task [24], as discussed in Table III.
We assume that this issue may affect some of the datasets
in our study, since that, although Borderline-SMOTE aims to
provide a more clear decision boundary, it does not figure
among the best approaches (Table IV).

ADASYN considers the majority neighborhood of the mi-
nority examples to guide the oversampling procedure: the
minority examples are assigned different weights according to
the number of majority examples in their neighborhood. Adap-
tively assigning weights to the minority examples is a way
to smooth the above-mentioned issues of Borderline-SMOTE;
however, the definition of parameters for weight assignment
may be inappropriate to correctly distinguish the importance of
minority examples for classification. As mentioned in Section
II-A, the weight of each minority example is proportional to
the number of majority examples in its k-neighborhood, which
causes two main issues [24]:

• ADASYN may oversample unnecessary noisy examples:
noisy examples are typically surrounded by the majority



class, and therefore their weight will be high;
• ADASYN may fail to oversample important minority

examples close to the decision boundary, which is the
most important concept to learn, if all their k-nearest
neighbors are from the minority class.

Considering different weights for different minority exam-
ples is a way of defining the structure of minority data (al-
though ignoring the structure of majority data). If additionally,
the criterion to define those weights fails for some datasets,
ADASYN loses its main advantage. This is consistent with the
results provided in Table IV, where ADASYN is found in the
7th position, slightly above the middle of the table, although
far from the top winners.

5) Safe-Level-SMOTE and ADOMS: Safe-Level-SMOTE
also considers a weighted scheme to oversample the minority
examples in safe regions. The weight assignment is more
sophisticated than ADASYN’s, since that rather than looking
only to the majority neighborhood of each minority example,
Safe-Level-SMOTE also considers the structure of minority
data points: the weights defined by slratio allow Safe-Level-
SMOTE to place new instances near those considering “safer”,
easing the problem of small disjuncts while avoiding the
augmentation of noise regions. However, for specific scenarios,
Safe-Level-SMOTE may generate inconsistent examples [7]:
if a minority example is an outlier, inside a well-defined
majority cluster, then its slratio will be 0, causing the gap for
SMOTE synthetization to be 1, thus creating a new minority
instance in the exact location of a majority point. This may
explain its susceptibility to overfitting (Table III) and its poor
performance (Table IV).

Rather than placing synthetic examples along the line
between a minority example and one of its k minority
neighbors (as SMOTE), ADOMS considers the local minority
distribution along the example to oversample, through the
computation of the first principal component of the defined
k-neighborhood (Section II-A). Therefore, ADOMS takes ad-
vantage of SMOTE’s ability to define larger decision regions,
while considering the local structure. However, ADOMS
seems to fall behind SMOTE in the three considered strategies
from Table IV: we hypothesize that some of the instances
placed by ADOMS create more overlapping than SMOTE’s:
SMOTE generates instances along a line joining two minority
instances, yet ADOMS may place its instances in sparser
projections [21]. Since, as in SMOTE, the distribution of
majority examples is not considered, the generation procedure
might not be appropriate for all scenarios.

6) SPIDER and SPIDER2: SPIDER combines the local-
oversampling of noisy, difficult, minority examples with a
cleaning procedure that removes (or relabels) noisy majority
examples. The original SPIDER algorithm processed both
minority and majority examples at the same time, sometimes
severely modifying the majority class. To address this issue,
a new version was proposed, SPIDER2, that alleviates the
degradation of the minority class by processing minority
and majority examples separately. The major issues of these
methods are as follows:
• The process that leads to the amplification of minor-

ity examples does not distinguish between borderline

or noisy examples (if they are “not-safe”, they are all
considered “noise”). Therefore, these “unsafe” minority
examples are all given the same importance to classi-
fication: SPIDER/SPIDER2 can either be oversampling
difficult examples so that they are not misclassified, but
at the same time, they can be augmenting undesired noise
regions;

• Both methods perform replication of examples rather than
synthetization, which adds no new information;

• When “relabeling” is chosen, SPIDER/SPIDER2 perform
an oversampling procedure similar to SMOTE, except
that instead of generating new instances in the neigh-
borhood of minority examples, it relabels their majority
neighbors: however, relabeling examples might not be an
appropriate approach in some domains.

Although SPIDER and SPIDER2 aim to define a taxon-
omy of minority examples, they do not distinguish between
two important minority concepts, “borderline” and “noisy”,
addressing them as equals. Also, the fact that these methods
consider replication of existing examples rather than the syn-
thetization of new ones, is surely responsible for their lower
positions on Table IV, along similar methods with the same
inner procedure (CBO+Random and ROS). Finally, they are
the only methods for which it is not possible to establish
the amount of oversampling, which, in this work, has been
established to accomplish a perfect balance in the training sets
(50%-50% distribution). Since the remaining methods were
optimised to achieve perfect balance, it was expected that
SPIDER/SPIDER2 might provide somewhat erratic results, as
discussed in Section V-B.

7) AHC and MWMOTE: Through clustering, AHC is able
to consider the structure of both minority and majority classes,
which is a great advantage over most oversampling algorithms
that focus mostly on local properties rather than the whole
data structure. Also, specifying the number of clusters is not
an issue, since all levels of the resulting dendrograms are
considered. However, this originates its major disadvantage:
the process becomes very computationally expensive. AHC’s
ability to take into account the structure of data seems to be
one of the reasons why it figures among the best approaches
(Table IV), which is also confirmed in similar approaches (e.g.
ADASYN, MWMOTE).

As discussed in Section II-A, MWMOTE is the most
complete method, and its inner procedure is able to surpass
most issues explained above. MWMOTE aims to provide
i) an improved way of selecting the minority examples for
oversampling, by being more meticulous on the way the
importance of minority examples for classification is defined
and ii) an improved way of generating new synthetic examples,
avoiding the issues of SMOTE-based synthesization. To that
end, MWMOTE considers filtering, a weighted scheme based
on a taxonomy of minority examples, and a SMOTE-like
cluster-based synthesization of examples:
• MWMOTE starts by filtering the initial minority set to

find the examples that are surrounded by the majority
class, thus avoiding that noisy points are oversampled;

• Then, MWMOTE defines the importance of each minor-
ity example for classification, taking into account three



main factors:
(i) minority examples closer to the decision boundary

should have a higher weight than those farther from
it;

(ii) minority examples within sparse minority clusters
should have a higher weight than those on dense mi-
nority clusters (which alleviates the problem of small
disjuncts);

(iii) minority examples closer to a dense majority cluster
should have a higher weight than those closer to a
sparse majority cluster.

• Finally, MWMOTE reduces the issues of SMOTE-like
synthesization by considering a cluster-based oversam-
pling approach: the generation of new minority examples
is performed using only minority neighbors of the same
clusters.

By combining strong features of other algorithms (filtering,
clustering, adaptive weighting), MWMOTE performs a more
guided oversampling procedure, that considers not only the
distribution of majority examples around minority examples to
define their importance, but also the structure of minority and
majority examples (through clustering). This behavior is what
makes MWMOTE one of the top approaches, and outstanding
in dealing with several difficulty factors that arise in real-
world datasets [45], namely overlapping (through filtering),
noisy data (through a weighting scheme) and small disjuncts
(through clustering). In the extended version of this pa-
per (https://eden.dei.uc.pt/∼pha/Long-version-CIM.pdf), read-
ers may find a comprehensive table that resumes the main
characteristics of the oversampling algorithms implemented
in this work. The key factors that distinguish algorithms from
each other are presented in a synthesised way and their greatest
advantages and disadvantages are highlighted.

Taking into account the characteristics of the inner pro-
cedure of each method, and in light of the performance
results discussed in the previous sections, it seems that the
best oversampling methods are those that combine three main
characteristics:

1) Cluster-based oversampling, so that the
structure/distribution of both the minority and majority
examples is considered: this approach seems to be
superior to considering only the majority neighborhood
of individual minority examples or filtering out some
minority/majority examples;

2) Adaptive weighting of minority examples: defining a
proper taxonomy of minority examples (borderline, safe,
noise, and rare/small disjuncts) is crucial so that the
importance of each example for classification is properly
addressed: more important examples should be oversam-
pled more often;

3) Cleaning procedures, to overcome some issues that rise
naturally during oversampling, namely the generation of
synthetic examples in overlapping areas.

VI. CONCLUSIONS AND FUTURE WORK

The goal of this work was essentially threefold:

1) To emphasize the risk of overoptimism related to the
joint use of CV and oversampling, extending the work
of Blagus and Lusa [13];

2) To distinguish the problem of overoptimism from the
overfitting problem and study the influence of the
datasets’ complexity generated by oversampling algo-
rithms on the classification task;

3) To determine the performance of the state-of-the-art over-
sampling strategies, in order to provide some insight on
the ones that reveal the best behavior.

Attending to these sub-objectives, there are three main
conclusions to be derived:

(i) The cross-validation procedure after the oversampling
(Approach 1) leads to overoptimistic results and makes
this approach inappropriate for imbalanced domains. Ap-
proach 2 – performing oversampling in the training sets
at each iteration of a cross-validation procedure – is the
correct way of validating results in imbalanced scenarios.
The overoptimism is not related to the data’s sample
size or imbalance ratio, but rather to the complexity of
the prediction task, where the maximum discriminative
power of all features (complexity measure F1) seems to
be a good predictor of this effect;

(ii) While Overoptimism is greatly associated with inappro-
priate validation setups, Overfitting (significant differ-
ences in performance between training and test sets)
is mostly related to the oversampling algorithm used,
where algorithms that create exact replicas of existing
patterns are the most prejudicial (e.g. CBO+Random).
The difference in complexity of the training and test
sets is lower in Approach 1 and is the rational behind
its overoptimistic behavior: the training and test sets
have a similar structure, that is, they are balanced and
might contain exact replicas or similar data points to the
training data;

(iii) Among the implemented oversampling methods,
SMOTE+TL and MWMOTE achieve the best results,
with average test AUC values of 0.871 (considering all
classifiers). These techniques change the overlapping
areas in the data and increase their discriminative power.
Overall, the best oversampling techniques possess
three key characteristics: use of cleaning procedures,
cluster-based synthetization of examples and adaptive
weighting of minority examples.

Furthermore, we have performed a regression and clustering
analysis which confirmed that the complexity produced by the
oversampling algorithms is related to the classification results,
in a quasi-linear way. As concluding remarks, we would like
to emphasize some lessons learned which could be beneficial
to new researchers in the field:

• Oversampling algorithms have distinctive inner proce-
dures that are better suited to particular characteristics of
data (e.g. CBO inflates small disjuncts, SMOTE-TL and
SMOTE-ENN deal with class overlapping, Safe-Level-
SMOTE and Borderline-SMOTE prioritize safe and bor-
derline concepts in data). Thus being, analyzing data



complexity measures may provide useful insights to guide
the choice of appropriate oversampling methods;

• Stratified CV is the state-of-the-art validation approach
for performance evaluation and should be carefully de-
signed in imbalanced domains. Nevertheless, even a
correct CV may cause partition-induced covariate shift
during the learning stage [40], which can lead to loss in
performance or under-estimation of results. A promising
approach to surpass the issues of dataset shift is the Dis-
tribution Optimally Balanced stratified cross-validation
(DOB-SCV) [46], which is worthy of investigation in
future works in the field.

As future work, several undersampling and other new over-
sampling techniques could be included in the analysis, in order
to determine the complexity changes they make in the original
datasets. In this context, the novel R package “imbalance”
could be of interest, given that it includes the implementation
of recent resampling algorithms in the literature [47]. Also,
one could focus on specific sub-problems of imbalanced data
(e.g. small disjuncts, overlapping, lack of data) and study
their identification in multidimensional data and/or ways to
surpass them using preprocessing techniques. Finally, future
work could also consider an extension of this research for
datasets with higher dimensionality.
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of different classes and types of examples in multi-class imbalanced
datasets,” Pattern Recognition, vol. 57, pp. 164–178, Sep. 2016.

[36] G. Douzas and F. Bacao, “Self-organizing map oversampling (SOMO)
for imbalanced data set learning,” Expert Systems with Applications,
vol. 82, pp. 40–52, Oct. 2017.

[37] S. Shilaskar, A. Ghatol, and P. Chatur, “Medical decision support system
for extremely imbalanced datasets,” Information Sciences, vol. 384, pp.
205–219, Apr. 2017.

[38] J. Liu, Y. Li, and E. Zio, “A SVM framework for fault detection of the
braking system in a high speed train,” Mechanical Systems and Signal
Processing, vol. 87, pp. 401–409, Mar. 2017.

[39] J. Luengo, A. Fernández, S. Garcı́a, and F. Herrera, “Addressing
data complexity for imbalanced data sets: Analysis of SMOTE-based
oversampling and evolutionary undersampling,” Soft Computing, vol. 15,
no. 10, pp. 1909–1936, Oct. 2011.
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