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Background: Recurrence is an important cornerstone in breast cancer behavior, intrinsically related to
mortality. In spite of its relevance, it is rarely recorded in the majority of breast cancer datasets, which
makes research in its prediction more difficult. Objectives: To evaluate the performance of machine learning
techniques applied to the prediction of breast cancer recurrence. Material and Methods: Revision of published
works that used machine learning techniques in local and open source databases between 1997 and 2014.
Results: The revision showed that it is difficult to obtain a representative dataset for breast cancer recurrence
and there is no consensus on the best set of predictors for this disease. High accuracy results are often
achieved, yet compromising sensitivity. The missing data and class imbalance problems are rarely addressed
and most often the chosen performance metrics are inappropriate for the context. Discussion and Conclusions:
Although different techniques have been used, prediction of breast cancer recurrence is still an open problem.
The combination of different machine learning techniques, along with the definition of standard predictors
for breast cancer recurrence seem to be the main future directions to obtain better results.
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1. INTRODUCTION
Breast cancer (BC) figures among the major causes of concern worldwide. According to
the latest GLOBOCAN statistics [World Health Organization 2012], it was the second
most frequently diagnosed cancer and the fifth cause of cancer mortality worldwide,
responsible for 6.4% of all deaths.

The mortality associated to this pathology is mostly related to metastization [Moody
et al. 2005], the spread of cancer to other parts of the body remote from the breast,
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Table I. A Comparison between KDD, SEMMA, and CRISP-DM
Knowledge Discovery Processes [Azevedo and Santos 2008]

KDD SEMMA CRISP-DM
Pre-KDD ————— Business understanding
Selection Sample Data understanding
Preprocessing Explore
Transformation Modify Data preparation
Data mining Model Modeling
Interpretation/Evaluation Assessment Evaluation
Post KDD ————— Deployment

and recurrence (or relapse), which describes cancer that reappears after treatment
[Mendonza 2013]. Being documented in 10%–15% of all BC patients [Van den Hurk
2011], recurrence assumes a pivotal importance in their prognosis. However, it is not
as well studied as BC itself. Searching in Thomson Reuters [2015] platform for re-
search works with the expression “breast cancer” in the title yields more than 330,000
results. A similar search focused on recurrence yields only around 20,000 results (ap-
proximately 6%), obtained when the search terms are extended to “recurrence(s),”
“relapse(s),” and “metastasis (es)” (individually or in combination). These results can
be partially explained by the fact that, for instance, none of the three major American
cancer registries reports cancer recurrence information [In et al. 2014].

Besides the obvious implications of recurrence in mortality, BC patients also face se-
rious treatment-related complications, which increases their risk of death from causes
unrelated to BC itself [Farr et al. 2013]. In this scenario, accurate prediction of BC
behavior assumes an important role, since it aids clinicians in their decision-making
process, enabling a more personalised treatment for patients. Some of the studies
regarding cancer recurrence involve the use of statistical methodologies, or machine
learning algorithms, which have a long history in cancer research [Kononenko 2001;
Cruz and Wishart 2006; Kouroua et al. 2015]. This research work attempts to provide
an overview of the prediction of BC recurrence using machine learning techniques. The
challenge is to accurately predict recurrence events, within a binary outcome (yes/no).
This challenge encompasses not only the choice of a good dataset (containing qual-
ity data) but also the selection of the most appropriate features, as well as the most
advantageous algorithm.

The remainder of the article is organized as follows: Section 2 covers the steps used
by different authors to predict BC recurrence, highlighting the datasets, variables in-
cluded in the reviewed studies, data mining algorithms, sampling strategies, and eval-
uation metrics used. Section 3 depicts the analyzed works in more detail and Section 4
presents a discussion on the different works. Finally, some conclusions and future
directions are discussed in Section 5.

2. PREDICTING BC RECURRENCE PHASES AND TASKS
The most common processes to develop a data mining approach are Knowledge Dis-
covery in Databases (KDD) [Fayyad et al. 1996]; Sample, Explore, Modify, Model, and
Assess (SEMMA) [SAS Institute 2015]; and Cross-Industry Standard Process for Data
Mining (CRISP DM) [Chapman et al. 2000]. The first two are composed of five steps
each; despite the different designations, their steps are generally equivalent [Azevedo
and Santos 2008]. The third strategy, CRISP DM, presents two novel steps that consist
in business understanding, where, after the evaluation phase, the results are inter-
preted from a business perspective; and the deployment step, where the final process
achievements are somehow incorporated in a product/service (more related to a busi-
ness perspective). Table I highlights the difference between these processes. As all BC
recurrence studies analyzed use a KDD strategy, its steps are used to highlight the
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methodology followed by each of the works. In the following subsections, we explore
some of the steps in the KDD approach and how they were addressed in the reviewed
works.

2.1. Selection
This step consists in the selection of a dataset and an appropriate set of features for
knowledge extraction. The datasets can be publicly available (e.g., online) or they may
result from a collaboration between institutions and research teams, not available for
the general public. Feature selection may be performed manually, or using variable
selection algorithms. In particular, for BC recurrence, 7/17 of the studies used manual
selection (five with the help of medical experts), while some of the others took advantage
of well-known feature selection algorithms; for instance, Jonsdottir et al. [2008].

The datasets and the number of patients used in the analyzsed studies are summa-
rized in Table II. From the 17 reviewed works, the majority uses available datasets
(nine works). Among those, four works use the Wisconsin prognostic breast cancer
(WPBC) dataset and three use the BC dataset, both available from the University of
California, Irvine machine learning repository (UCI Repository) [Lichman 2015]. The
remaining two datasets are available from van ’t Veer’s study [van ’t Veer et al. 2002]
and the widely known Surveillance, Epidemiology, and End Results (SEER) database
(U.S. National Cancer Institute). The unavailable databases are collaborations with
specialized BC centers, registers, or teaching hospitals, in several different countries
(Sweden, Spain, California, Iceland, South Korea, and Ljubljana). The Institute of On-
cology in Ljubljana was the greatest contributor for BC recurrence studies, providing
the data for five of the reviewed works.

Although the endpoint for predicting BC recurrence is not defined for some cases,
most of the datasets are associated with a specific time period for recurrence predic-
tion (e.g., 4–5 years after the diagnosis, 10 years after surgery). Moreover, the great
majority of the datasets suffered from a considerable class imbalance, with uneven
cases of “recurrence” versus “no-recurrence,” following a 30%–70% distribution. The
most affected works are Mani et al. [1997] and Razavi et al. [2007], with a class dis-
tribution (recurrence/no-recurrence) of 10%–90% and 20%–80%, respectively. Going
against this trend, three works (Sun et al. [2007], Trumbelj et al. [2010], and Tomczak
[2013]) perform their experiments on balanced datasets with approximately 50%–50%
class distribution. The distribution is unknown for two works, Razavi et al. [2005] and
Jerez-Aragonés et al. [2003].

Data imbalance occurs when one class (wi) is represented by a larger number of
examples than the others. Considering a two-classification problem, a dataset is said
to be imbalanced if there exists an underrepresented class (the minority class) in com-
parison to the other class (the majority class) [Chawla 2010; Longadge and Dongre
2013]. For instance, consider the case of women with BC, where w1 represents “re-
current” tumors and w2 represents “nonrecurrent” tumors in a total population of 100
women. If 50 women suffer recurrence while the other 50 do not, then clearly there is
no class imbalance. On the contrary, if 90 women do not suffer from recurrence, then
this class is more represented than the “recurrence” class. Imbalance data is known
to deteriorate the performance of a classifier, since there is a “concept,” a “class,” that
is underrepresented, meaning that the classifier does not “learn” this class as well as
the other: it tunes its predictions for the larger class, while developing “blind spots”
toward the minority one [Kotsiantis et al. 2006; Garcia et al. 2007]. In many machine
learning problems, dealing with class imbalance problems remains a knotty subject for
classification algorithms, due to their tendency to overlook small, underrepresented
concepts, in favor of better represented, more clear, larger concepts. However, this is
especially problematic when there is a higher cost of misclassification of the minor-
ity examples [Ganganwar 2012], which is the case of BC recurrence. A false positive
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Table II. Datasets and Feature Selection used in the Analyzed Studies (NU - Not Used, ER - Estrogen Receptor,
PR - Progesterone Receptor, ICD - International Classification of Diseases)

Publications

Dataset
(recurrence/no

recurrence)
Patient

Characteristics
Tumor

Characteristics Treatments

Mani et al. [1997] Breast Cancer Center,
Orange County,
California (85/802)

Lymphedema Tumor presence and
its invasive nature,
size, lymph nodes
involvement, stage

NU

Jerez-Aragonés
et al. [2003]

Hospital Clı́nico
Universitario Malaga,
Spain (1035 patients,
not effective,
distribution unknown)

Age, menarchy age,
menopausal age, first
pregnancy
age/pregnancies
number, number of
miscarriages

Size, grade, lymph
nodes involvement,
expression of ER, PR,
p53 accumulation,
ploidy, S-phase

NU

Razavi et al.
[2005, 2007]

Swedish Regional BC
Register (2005: 3949
patients, distribution
unknown; 2007: 3699,
664/3035)

Age Size, perigland growth,
lymph nodes
involvement,
expression of ER, PR,
S-phase

NU

Sun et al. [2007] Publicly available
microarray data (van ’t
Veer et al. [2002])
(46/51)

Age Size, vascular
invasion, lymphocytic
infiltration, expression
of ER, PR, 70-gene
profile

NU

Ryu et al. [2007a] Breast Cancer Dataset
(available from UCI
Repository) (85/201)

Age, menopausal
status

Location, size, grade,
lymph nodes
involvement

Radiotherapy

Jonsdottir et al.
[2008]

Rose dataset
University Hospital in
Iceland (73/184)

Age, comorbidities,
carcinoembryonic
antigen/cancer antigen
15-3 (CEA/CA-15-3)
values

Clinical detectable,
histological type, size,
local invasion,
inflammatory
component,
lymphovascular
invasion, lymph nodes
involvement,
metastasis (lung,
bone), expression of
ER, PR, S-phase

Chemotherapy
(pre- and
postsurgery),
hormonotherapy,
radiotherapy

Fan et al. [2010] SEER Public-Use Data
2005 (46,996,113
patients, not effective,
distribution unknown)

Race, age, marital
status

Behavior defined by
ICD-03, location
(laterality, breast
regions), size, grade,
local invasion, lymph
nodes involvement

Surgery,
radiotherapy

Belciug et al.
[2010]

Wisconsin Prognostic
BC (available from
UCI Repository)
(47/151)

NU Area, perimeter,
compactness, texture,
concavity, concave
points, size, lymph
nodes involvement

NU

Trumbelj et al.
[2010]

oncology BCR
(Institute of Oncology,
Ljubljana) (449/432)

Age, menopausal
status, personal or
familiar previous
malignancies

Histological type, size,
grade, local invasion,
lymphovascular
invasion, lymph nodes
involvement,
expression of ER, PR

Chemotherapy,
hormonotherapy

(Continued)
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Table II. Continued

Publications

Dataset
(recurrence/no

recurrence)
Patient

Characteristics
Tumor

Characteristics Treatments

Kim et al. [2012] Tertiary Teaching
Hospital, South Korea
(195/484)

NU Number of tumors,
size, grade, local
invasion,
lymphovascular
invasion, lymph nodes
involvement,
expression of ER

NU

Salama et al.
[2012]

Wisconsin Prognostic
BC (available from
UCI Repository)
(47/151)

NU Area, perimeter,
compactness, texture,
concavity, concave
points, size, lymph
nodes involvement

NU

Murti [2012] Breast Cancer Dataset
(available from UCI
Repository) (81/196)

Age, menopausal
status

Location, size, grade,
lymph nodes
involvement

Radiotherapy

Tomczak [2013] Institute of Oncology,
Ljubljana (followup
from Strumbelj et al.)
(949 patients,
distribution unknown
but assumed the same
as the one from
Strumbelj’s: 51%/49%)

Age, menopausal
status, personal or
familiar previous
malignancies

Histological type, size,
grade, local invasion,
lymph/vascular
invasion, lymph nodes
involvement, stage,
expression of ER, PR

Chemotherapy,
hormonotherapy

Pawlovsky and
Nagahashi [2014]

Wisconsin Prognostic
BC (available from
UCI Repository)
(46/148)

NU Area, perimeter,
compactness, texture,
concavity, concave
points, size, lymph
nodes involvement

NU

Beheshti et al.
[2014]

Wisconsin Prognostic
BC (available from
UCI Repository)
(47/151)

NU Area, perimeter,
compactness, texture,
concavity, concave
points, size, lymph
nodes involvement

NU

Chaurasia and
Pal [2014]

Breast Cancer Dataset
(available from UCI
Repository) (85/201)

Age, menopausal
status

Location, size, grade,
lymph nodes
involvement

Radiotherapy

(classifying a “no-recurrence” case as “recurrence”) has a strong impact on the physical
and mental state of the patient; but more importantly, a false negative (classifying a
“recurrence” case as “no-recurrence”) is more costly because it could potentially turn
into a life-threatening situation, since a diseased patient believes everything is going
perfectly with her treatment, when in fact the cancer is back. For that reason, dealing
with the problem of class imbalance is crucial, whether by using classification algo-
rithms that can handle these characteristic issues of imbalanced data (Section 2.3),
by finding an appropriate sampling strategy to change the original class distribution
(Section 2.4), or alternatively, by selecting evaluation metrics capable of accurately
translating the classifier’s behavior in terms of predicting the positive and negative
examples in particular (Section 2.5) [Jo and Japkowicz 2004; Chawla et al. 2004; He
and Garcia 2009].

Concerning the feature selection—and for some years—many factors were linked
to BC recurrence, namely, age at diagnosis, size, stage and grade of tumor, involve-
ment of lymph nodes, menopausal status, Estrogen (ER) and Progesterone Receptors
(PR), and HER2 pattern (Human Epidermal Growth Factor Receptor 2) [Mendonza
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2013]. Frequently, some of them are associated, given that tumors in younger patients
(premenopausal) tend to be high grade, with a triple negative phenotype: without ex-
pression of ER, PR, and also HER2. Variables used in the BC recurrence prediction in
the previously analyzed studies were compared using three groups: patient character-
istics, tumor characteristics, and treatments.

From the analysis of Table II, it is important to highlight that there are many datasets
with different origins (local and open source) used to deal with this problematic. Also,
different authors used dissimilar varieties with a weak attention for the treatment
followed by the patient (only 7/17 studies focused on this factor). Attending to patient
characteristics, the majority of studies (10/17) identified age as an important predictor,
followed by menopausal status (5/17). This last factor could not be totally independent
from age as very young patients are also premenopausal and very old ones are always
postmenopausal. All the studies considered size as the main predictor in the tumor
characteristics group, followed by lymph nodes involvement (16/17).

2.2. Data Cleaning and Preprocessing
Data cleaning and preprocessing tasks are performed to reduce noise and increase the
consistency of data. The preprocessing steps most addressed in the reviewed research
works were normalization/standardization of data and missing data handling. Two sim-
ple ways of data preprocessing are normalization (Min-Max transformation) and stan-
dardization (Z-Score transformation) [Suarez-Alvarez et al. 2012]. Normalization refers
to the feature scaling between its minimum and maximum values, while standardiza-
tion rescales the features so that they follow a standard normal distribution (zero mean
and unitary standard deviation). The objective of normalization/standardization is to
make features with different scales and ranges of measurement (e.g., age, hemoglobin
values) comparable, so that none has more influence than the others on classification
task [Shalabi and Shaaban 2006].

Missing Data (MD) can result from a huge variety of events and represents a common
challenge in healthcare contexts [Abreu et al. 2013b; Garcı́a-Laencina et al. 2015].

In brief, MD can be produced At Random (MAR), completely At Random (MCAR), or
completely Not At Random (MNAR) [Little and Rubin 2002]. Over the years, several
strategies have been studied to handle this issue. The most simple one is Listwise
Deletion, where records with MD are simply discarded. This approach may be inap-
propriate, especially in environments like health care, where most often patients are
characterized with a large number of variables with high probability of missing ob-
servations. According to the literature, imputation is a more appropriate strategy to
deal with MD: using the available complete data, the MD are estimated and filled with
plausible values [Garcı́a-Laencina et al. 2010; Cismondi et al. 2013]. Mean/Mode is one
of the simplest imputation strategies, where continuous variables are imputed accord-
ing to their mean, and categorial variables using their mode. Despite its simplicity, this
strategy causes the data to lose some variability, which constitutes its major drawback.

A more sophisticated strategy is using mixture models trained with the Expectation-
Maximization (EM) approach, which consists of two steps [Dempster et al. 1977]: the
expectation step (E-step) and the maximization step (M-step). Basically, the EM al-
gorithm is based on finding the maximum likelihood of data in order to find the best
estimates for missing observations. For the algorithm to start, the E-step makes an
initial guess of the model parameters. Using those parameters, and according to the
observed (complete) data, it produces estimates for missing observations. The M-step
is then responsible for computing new model parameters using the current MD estima-
tions. This process continues repeatedly until the algorithm converges. More specific
details can be found in Dempster et al. [1977], Tsikriktsis [2005], Bishop [2006], and
Zio et al. [2007].
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Multiple Imputation (MI) substitutes every missing observation M times (M > 1),
using M different estimators (e.g., EM, Markov Chain Monte Carlo methods) [Rubin
2004]. As the name implies, multiple complete datasets are generated, each with dif-
ferent estimates for the absent observations. Then, the M complete datasets have to
be analyzed using standard methods—for instance, classification models—in order to
combine the different estimates and obtain a single set of results (a discussion on com-
bination rules is given in Little and Rubin [2002]). On one hand, MI is able to reflect
the data variability due to missing values. On the other hand, it is computationally
expensive, given the generation of different MD estimations, and the required time to
further analyze its results.

2.3. Machine Learning Methods
Throughout the years, many Machine Learning (ML) algorithms have been used to
predict BC recurrence. A possible taxonomy for the categorization of these methods
consists in dividing them into “black-box” and “white-box” methods [Larose 2005].
Black-box algorithms work on the basis of “input stimulus” and “output reactions,”
without any knowledge of their internal procedures. From the user’s perspective, this
type of algorithms raises a wide range of questions that will always remain unclear,
such as how the results are generated or how they can be explained by the internal
methods, given a specific input, among others. This issue becomes especially critical
when the user (e.g., a clinician) considers interpretability as a key requirement, in or-
der to use these kinds of approaches and benefit from them in his daily decision-making
activities. Contrarily to black-box algorithms, white-box algorithms allow the inspec-
tion and explanation of their internal rules, that is, the results of a white-box algorithm
may be analytically (mathematically) derived from a given set of inputs [Larose 2005].
This section presents a review on the algorithms used to predict BC recurrence in
the studied research works, starting with the white-box algorithms followed by the
back-box algorithms.

2.3.1. Decision Trees. Decision Trees (DTs) are defined by recursively partitioning the
input space from a root node to multiple branch nodes [Quinlan 1993; Mitchell 1997].
The root node is the “first division” of a DT, from which outgoing edges create several
other nodes. Nodes with outgoing edges (with the exception of the root node) are known
as internal (or test) nodes, while the remaining (that only have incoming edges) are
called leaves, each one assigned to a class. The test nodes divide the input feature
space into p ≥ 2 subspaces according to a condition test of the input features values.
Typically, a single feature is considered in each test node and the feature space is
divided according to that feature’s values. For continuous features, each outgoing edge
represents a certain range. An input vector is classified in the DT by sorting it from
the root to a leaf, according to the results of the conditions tested along the path.

Some of the most popular DT approaches are the Iterative Dichotomiser (ID3) algo-
rithm [Quinlan 1986], its successors C4.5 and C5.0 [Quinlan 1993; Kantardzic 2011],
and Classification And Regression Tree (CART) [Breiman et al. 1984], which use
entropy-based measures as splitting criterion during the tree construction process.
Some frequently used measures are information gain, which at each node of the tree
determines the attribute that provides the most information if used as splitting crite-
ria, or the gain ratio, which is an improvement over information gain that takes into
account the number and size of branches when choosing the attribute to be used as
splitting criteria [Mitchell 1997; Witten and Frank 2005].

C5.0 is an extension of C4.5. Its DT induction is essentially the same, but it offers
some improvements over C4.5 in terms of speed, memory usage, pruning, and weighting
schemes [Patel and Rana 2014].
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DTs are computationally efficient, can easily handle mixed variables (continuous
and discrete), and the rules generated by them are relatively easy to interpret and
understand, particularly in health care contexts [Chen et al. 2005]. However, noise and
MD can contribute to drastically decrease the accuracy of these algorithms [Liu et al.
2005; Zhang et al. 2005; Atla et al. 2011].

To understand how DTs work in the context of BC recurrence, consider 10 patients
and two classes: “recurrence” and “no-recurrence,” Each sample (patient) could be
characterized by several attributes, such as age, tumor size, Hormonal Receptor (HR)
status, and so on. To build a classification tree, DT algorithms start by determining
which attribute should be the tree’s root, according to some attribute selection measure.
Say that “tumor size” is chosen as the root node, and includes two possible values
(branches): “<2cm” and “!2cm.” The training instances are therefore divided according
to their ‘tumor size” values, and this attribute is no longer available to be used again.
For each branch of “tumor size” the most informative attribute must be found following
the same logic. For instance, for “!2cm,” the “hormonal receptor status” with branches
“positive” and “negative” could follow. This process is repeated until (i) all samples
belong to the same class or (ii) there are no more attributes to proceed with the division.
As an example, consider that “tumor size < 2cm” includes three patients, all “no-
recurrence” cases and “tumor size ! 2cm” has seven patients, divided into four patients
with “positive HR status” and three patients with “negative HR status.” Furthermore,
the HR− patients are all “no-recurrence” cases, but the HR+ patients have three cases
of “recurrence” and one of “no-recurrence.” Imagine that the remaining attribute (age)
adds no new information to this division, proving to be irrelevant. The final tree is
therefore complete, and when samples do not belong to the same class while in the
same branch, a majority voting scheme is used: the leaf represents the most common
class. After the DT is constructed, the test examples left out while building the tree
are used for evaluation. To classify those instances, the tree’s path is followed from the
root up to its final leaf, according to the instance’s values. For instance, a patient with
“tumor size = 2cm” and “hormonal receptor status = positive” would be classified as a
“recurrence” event.

2.3.2. Naive Bayes. Naive Bayes (NB) classifier takes into account the probability dis-
tribution of the patterns in each class to make a decision, assuming that there is a
probabilistic relationship between predictors (features) and the output (class) [Luttrell
1994]. Bayesian classification determines the probability of a given pattern represented
by x to belong to class ωi, P (ωi | x), called posteriori probability. Considering a binary
classification problem, where two posteriori probabilities exist, P (ω1 | x) and P (ω2 | x),
NB decision rule considers that

—If P (ω1 | x) > P (ω2 | x), then x belongs to ω1;
—If P (ω1 | x) < P (ω2 | x), then x belongs to ω2.

Alternatively, if P (ω1 | x) = P (ω2 | x), then the choice is arbitrary. The posteriori
probabilities are calculated according to the well-known Bayes’ law (Equation (1)).

P (ωi | x) = p (x | ωi) P (ωi)
p (x)

, (1)

where P (ωi) is the prior probability of class ωi, that is, an estimate of the probability of
pattern x to belong to ωi; p (x | ωi) is the likelihood of x, that can be estimated through
the Probability Density Function (pdf ) of x; and p (x) is the total probability of x, which
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can be determined using Equation (2):

p (x) =
c∑

i=1

p (x | ωi) P (ωi) . (2)

Due to the fact that NB uses probability rules, it inherits the strengths of statis-
tics. Also, another advantage of this method is allowing the researcher to include his
domain experience in the modeling process of NB classifiers. Moreover, being a white-
box method, it can be more easily understood, for instance, by clinicians. However, its
computational complexity, especially when a large dataset is used, constitutes its main
drawback [Lee and Abbott 2003].

Consider two classes, “recurrence” and “no-recurrence,” and only one attribute,
“hormone receptor status,” with values “HR+” and “HR−,” and a test instance
(a test patient) with “HR+.” To determine if this patient is going to suffer re-
currence or not, NB would have to base its predictions on the values of P (ωi)
and p (x | ωi). For i = 2 classes, P (ωi) are simply the probabilities of “recurrence”
and “no-recurrence” found in the training data: P (recurrence) and P (no-recurrence).
The values p (x | ωi) represent the conditional class probabilities of an “HR+” case,
given that “recurrence” and “no-recurrence” events were observed in the training
data: p (HR+ | recurrence) and p (HR+ | no-recurrence). The final posteriori probabili-
ties P (recurrence | HR+) and P (no-recurrence | HR+) result from the direct multipli-
cation of the priors and likelihoods since the p (x) term in Equation (2) can be ignored,
because due to the sum expression it is the same for both classes. Thus, NB decides on
the classification of the test patient based on the posteriori probabilities’ values; for ex-
ample, if P (recurrence | HR+) > P (no-recurrence | HR+), then the patient is classified
as a “recurrence case”; otherwise, as a “no-recurrence” one.

2.3.3. Logistic Regression. Logistic Regression (LR) is a mathematical method that aims
to describe the relation between a group of independent variables and a dichotomous
dependent variable. To achieve that, LR tries to estimate a set of unknown parameters
using a maximum likelihood method [Kleinbaum et al. 2002]. The term “Logistic Re-
gression” may be slightly misleading, since regression is mostly used to build models
where the target feature is continuous. However, LR is used for classification, not re-
gression. In brief, LR involves a probabilistic view of classification. It maps a point of a
multidimensional feature space to a value in the range [0,1], using a logistic function.
The logistic model can therefore be interpreted as a probability of class membership by
applying a certain threshold to such probability. In conclusion, LR gives the class prob-
ability for each considered feature vector. The class assignment depends on the chosen
threshold. One of the main advantages of this method is that it clearly illustrates
how the inputs justify the outputs through the final generated equation. However, its
performance drops when the dataset contains MD.

To explain the application of LR to BC recurrence scenarios, let us consider the
occurrence of recurrence events in a group of women as a function of their age at
menarche (for instance, 9–17), as training data. Recurrence events are coded as 1
and no-recurrence events are coded as 0. To determine whether a given patient (test
data) will suffer recurrence, LR fits a logistic function to the training data, defining
a probabilistic function that maps an input (age at menarche) to a probability of re-
currence. The probability of a recurrence event (as all probabilities) will lie on the
interval [0,1], but can be translated into a binary class assignment (“no-recurrence” =
0 and “recurrence” = 1), by applying a decision threshold. For instance, if we consider
a threshold of 0.7, a patient whose probability of recurrence is 0.85 will belong to the
class “recurrence.”

ACM Computing Surveys, Vol. 49, No. 3, Article 52, Publication date: October 2016.

https://www.researchgate.net/publication/8986207_Bayesian_networks_for_knowledge_discovery_in_large_datasets_Basics_for_nurse_researchers?el=1_x_8&enrichId=rgreq-7ac60e050b5bf0bb7977d99ceadff215-XXX&enrichSource=Y292ZXJQYWdlOzMwOTA4ODMwODtBUzo0MTcwNzEwMDAyNDQyMjRAMTQ3NjQ0ODg4MzA3Ng==


52:10 P. H. Abreu et al.

2.3.4. K-Means Algorithm. K-Means is one of the most well-known clustering algorithms,
due to its easy implementation, efficiency, and success over a wide range of pattern
recognition applications [Jain and Dubes 1988]. K-Means is a partitional clustering
algorithm, which means that it does not impose a hierarchical structure and finds
clusters through the recursive partitioning of data, according to a similarity criteria
between data points [Jain 2010]. In brief, the K-Means algorithm works as follows.
First, the desired number of clusters, k, needs to be specified. Then, k randomly cho-
sen centroids (which are simply pseudodata points with the same dimensionality as
the ones intended to cluster) are initialized. The distances (e.g., Euclidean distance)
of each point to those k centroids is calculated, and each point is assigned to its closer
centroid. The initial partitions of data are defined at this point. However, the ob-
jective of K-Means is to find a partition such as the sum of the squared error over
all k clusters is minimized [Jain and Dubes 1988]. For that reason, the centroids of
each partition are updated at each iteration of the algorithm. The new centroids are
given by the mean vectors of the points belonging to each cluster. Again, new dis-
tances are calculated for each point, now considering the new centroids. This is re-
peated until there are no changes in cluster membership (none of the points changes
cluster).

It is worth mentioning that, unlike the previously discussed algorithms, K-Means
is an unsupervised learning algorithm. Moreover, despite its simplicity and low com-
putational cost, K-Means has some drawbacks that relate to the number of clusters,
the initialization of centroids, and the presence of noisy data [Jain and Dubes 1988;
Marques de Sá 2001]. The number of centroids k needs to be specified a priori, which
sometimes is not trivial, especially without sufficient domain knowledge. Also, since
the initialization of centroids is random, different runs of the algorithm may return
different results. Finally, K-Means is not robust against noisy data, which may skew
the update of cluster centers in some cases.

Imagine that we intended to cluster a group of women that includes “recurrence”
and “no-recurrence” cases. K-means clustering works on the basis of finding similar
points (similar patients) to group in the same cluster. In theory, “recurrence” and “no-
recurrence” patients should map onto two groups with a high intrasimilarity (between
elements of the same cluster) and low intersimilarity (between elements of distinct
clusters). Note that in practice this is not so linear, given the existent heterogeneity
between patients of the same class, as is natural in a disease with such a biological
variability as BC [Polyak 2011]. However, to define two distinct groups among these
patients, K-means would specify k = 2 random centroids, and a distance metric, so
that the distance between each pair (i, j) of patients can be computed and similar
patients grouped together. The algorithm would iterate, as the centroids adjust to
provide a solution that maximizes the distance between the two required groups [Jain
and Dubes 1988]. In the particular case of BC recurrence, the idea is that patients with
similar values of tumor size and location, age at menarche, hormonal status, and so
on are placed in the same cluster. When the K-means algorithm stabilizes, we would
end up with two groups. However, both these groups can contain “recurrence” and
“no-recurrence” patients (due to the tumor variability, as mentioned).

If the objective is solely to characterize the determined groups, no more procedures
are necessary: the analysis would resume to the study of the attributes’ values in each
group. However, if K-means is to be used for classification, a majority voting scheme is
necessary: the most common class in each group defines the class of the group. Then,
the centroids of both groups are saved, to allow the classification of new patients: the
distance of a new patient to each group’s centroid is calculated and the patient assumes
the class of the closest group [Zheng et al. 2014].
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2.3.5. Bagging. Created by Breiman, Bootstrap Aggregating (Bagging) uses several
bootstrap samples to train different classifiers, that are afterwards combined to achieve
the final classification results. Each bootstrap sample is created by randomly selecting
examples (with replacement) from a training set of size m. From n bootstrap samples,
n classifiers C1, C2, . . . , Cn are built [Efron and Tibshirani 1994], each one using a
different training set. The final classifier Cb is built from all the Cn classifiers, by
combining them through majority voting, where ties are broken arbitrarily (for more
details, please refer to Breiman [1996, 1998]).

The application of Bagging to the problem of BC recurrence is straightforward: from
a dataset comprising “recurrence” and “no-recurrence” cases, several bootstrap samples
are taken and each serves as training data for a particular classifier (e.g., C1 = Alg1,
C2 = Alg2, C3 = Alg3). The patients left out for testing are then classified by the
chosen group of classifiers. The outputs of each classifier are compared, so that the
most frequent class for a given patient is established as its final class assignment:
for instance, a patient xi that achieves a classification of C1 = no-recurrence, C2 =
recurrence, and C3 = no-recurrence belongs to class “no-recurrence.”

2.3.6. Boosting. Boosting was created to improve the accuracy of a specific algorithms’
family called “weak learning algorithms,” which are typically slightly correlated to the
true classification. On the contrary, strong learners are algorithms well correlated with
the true labels, providing good classification results. One of the advantages of weak
learners is that they are usually much faster than strong ones. The first Boosting pro-
cedure was introduced by Schapire [1990] and worked somehow similarly to bagging.
A subset of n examples (n < the total number of training examples N) was taken ran-
domly without replacement from an initial training set (considered to be the training
subset Z1). Z1 was then used to train a weak classifier C1. Afterwards, a training subset
Z2 (with n < N) was built, containing half the samples misclassified by C1, and another
weak classifier C2 was trained. Finally, all the samples of the initial training set N for
whose C1 and C2 predictions disagreed were trained against a third weak classifier, C3.
The final classifier was obtained by a voting scheme of C1, C2, and C3 [Kumar 2012] .

In 1995, Freund and Schapire [1995] introduced the most well-known boosting al-
gorithm, called Adaptive Boosting (AdaBoost). In AdaBoost, the idea is to consider a
weighting scheme to select the training subsets. This algorithm starts by considering
a maximum number of classifiers M and weighting each training example equally. The
misclassified examples get their weights increased for the next classification stages,
while the correctly classified examples get their weights decreased. These “weights”
simply determine their probability of being chosen for the training set in the next
stages and therefore, wrongly labeled examples have a higher probability of being used
(learned) again. Moreover, each classifier will get a specific weight attending to its per-
formance in the training set and the final classifier is defined by a linear combination
of all the considered M classifiers, each one contributing with its associated weight
[Kumar 2012].

Formulated by Friedman et al., LogitBoost is a probabilistic interpretation of Ad-
aBoost. It fits an additive LR model using Newton steps to find estimates for its pa-
rameters via the maximum likelihood [Friedman et al. 2000; Kumar 2012]. Instead of
using an exponential loss function (which AdaBoost does), LogitBoost minimizes the
logistic loss, which makes it less sensitive to outliers (known to be a bad feature of
AdaBoost).

The application of Boosting for BC recurrence scenarios is very similar to Bag-
ging’s. The only differences are that the classifiers chosen for the ensemble Cb =
{C1, C2, . . . , Cn} need to be weak classifiers and the training data varies for each classi-
fier: half of the wrongly classified patients from C1 will be included in C2’s training data
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and so forth. At the end of this training step, the test patients are classified according
to the same procedure as explained for Bagging.

2.3.7. Linear Discriminant Analysis. Linear Discriminant Analysis (LDA) is a linear trans-
formation technique, generally used to reduce the dimensionality of a dataset in the
preprocessing phase, in order to decrease the computational cost of classification and
avoid overfitting. Nevertheless, it is also used for classification alone, based on the
concept of searching for a linear combination of features that allows the maximiza-
tion of between-class variance, while minimizing the within-class variance. In other
words, the optimization criterion of LDA is to maximize the ratio of between-class and
within-class scatter. LDA, also called Fisher Discriminant Analysis (FDA), was first
developed by Fisher to deal with only two classes [Fisher 1936]. However, after more
than 10 years, this method was extended to deal with multiple classes [Rao 1948].

For simplicity, let us consider the case where a BC recurrence dataset includes a
group of patients (training data) described by two attributes (“age at diagnosis” and
“number of lymph nodes involved”), and two possible outcomes (classes “recurrence”
and “no-recurrence”). LDA would find an optimal linear model that best separates
the two classes, which in this example, with two-dimensional data, would simply be a
straight line. To understand what is meant by “maximizing the between-class variance”
and “minimizing the within-class variance”, consider that “number of lymph nodes” is
plotted as a function of “age at diagnosis.” Additionally, “recurrence” patients are rep-
resented as red dots and “no-recurrence” patients as blue dots. The LDA discriminant
function, represented by the straight line, is defined in such a way that the red dots
and blue dots are close among themselves (minimum within-class variance), but as far
apart as possible (maximum between-class variance). After this discriminant function
is determined, classifying a new (test) patient is straightforward: the values of age at
diagnosis and number of lymph nodes involved are replaced in the function’s equation,
enabling the computation of the class assignment. For this example, the class assign-
ment can even be determined visually, by plotting the test patient in the same graph
where the decision boundary (straight line) is represented and observing in which
region the point falls onto.

2.3.8. Support Vector Machines. Support Vector Machines (SVMs) were first introduced
by Vladimir Vapnik for two-class classification [Vapnik 1999]. Basically, this algorithm
tries to find the optimal decision hyperplane that maximizes the separation margin
between data points of distinct classes [Boser et al. 1992]. The middle of the separa-
tion margin defines the decision boundary (optimal hyperplane) and the data points
that are closest to it are the support vectors. SVMs belong to the general category of
kernel methods. Kernel methods can operate in high-dimensional spaces, since they
depend on the data only through dot-products. This has two main advantages: it al-
lows the generation of nonlinear decision boundaries and enables the classification of
data that has no obvious fixed-dimensional vector space representation [Scholkopf and
Smola 2002; Shawe-Taylor and Cristianini 2004]. SVMs are known for excellent classi-
fication performance, since they can handle high-dimensionality problems and have a
good generalization behavior. They balance the model’s complexity against its success
at fitting the data, which translates into a successful trade-off between the model’s
flexibility and the error in training data [Scholkopf and Smola 2002]. However, and de-
spite being a white-box algorithm, it requires a comprehensive understanding of how
it works. When training a SVM, researchers have to face several decisions concerning
the preprocessing stages of the input data and the SVM’s hyperparameters (e.g., kernel
function, regularization constant).

Consider a two-dimensional and two-class (“recurrence” and “no-recurrence”) lin-
early separable recurrence problem, where patients are characterized by “size of tumor”
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and “age at diagnosis.” There are several decision boundaries that could be defined to
separate both classes, such as the ones resulting from LDA or Multilayer Perceptrons.
However, the optimization criteria behind SVMs guarantees that the margin of the
decision boundary is maximized, and therefore, the decision boundary will be as far
away from both “recurrence” and “no-recurrence” cases as possible. In a scenario where
the recurrence problem is nonlinear, SVMs use a kernel function to transform the data
points to a higher dimensional space, making classification easier. For instance, imag-
ine that in the original input space, the patients’ data xi = {v1(tumor size), v2(age)} of class
“recurrent” form a filled circle in the input space (e.g., red dots), while the patients’ data
from class “no-recurrent” (e.g., blue dots) surround that circle. A linear boundary in
that input space would be impossible to achieve. SVMs solves this problem by mapping
the data points onto a higher dimensional (three-dimensional, in this case) space, by
adding a new feature v3 = v1

2 + v2
2. Since “recurrent” data points have lower values

of v1 and v2, their values of v3 will be lower as well. A projection onto an input space
defined by v1 and v3, for instance, would show a linearly separable problem (in fact, v3
alone is enough to separate both classes).

2.3.9. k-Nearest Neighbors. k-Nearest Neighbors (KNN) is a supervised classification
algorithm in which the k nearest neighbors of a point are chosen, found by minimizing
a similarity measure (e.g., Euclidean distance, Mahalanobis distance) [Altman 1992].
To determine the class of an unlabeled example, KNN computes its distance to the
remaining (labeled) examples, and determines its k-nearest neighbors and respective
labels. The unlabeled object is then classified either by majority voting—the predomi-
nant class in the neighborhood—or by a weighted majority, where a greater weight is
given to points closer to the unlabeled object. The major drawback of KNN is related
to the fact that it is a lazy learning algorithm. That means that there is no “model”:
the training data is not used to perform any generalization. Therefore, whenever KNN
searches for each instance’s nearest neighbors, it needs to go through the entire dataset,
which is especially problematic for large databases. Another issue is finding the op-
timal number of neighbors (k) and the most appropriate distance metric to use. This
requires a careful study of the dataset and the development of several KNN models, in
order to achieve the best results.

For BC recurrence problems, KNN can be used in a similar way to the k-means
algorithm, except that no groups are formed. To determine the class assignment of a
test patient, its distance to all the training patients included in BC recurrence dataset
is computed. A majority voting or weighted scheme is used to choose the class the
patient belongs to, according to the class assignment of its k closest patients. Imagine a
patient x with three nearest neighbors y (recurrent), w (recurrent), and z (no-recurrent).
A 3-Nearest Neighbor scheme with majority voting would assign patient x to class
“recurrent.” The value of k has to be defined a priori, or set to a range of values (say, k =
1, . . . , 30) to be evaluated one by one. The k value that maximizes the KNN algorithm
performance (see Section 2.5 for more information on how to measure performance) is
chosen to be the best k for the given dataset [Medjahed et al. 2013; Garcı́a-Laencina
et al. 2015].

2.3.10. Association Rule Learning. Association Rule Learning allows one to unveil the
relationship among variables in a dataset. Proposed by Agrawal et al. [1993], this
method assumes that all variables are categorical and because of that it is not a good
algorithm to deal with numerical data. Each identified association rule follows two main
concepts: support and confidence. Support identifies the percentage of the population
that follows a specific rule. Confidence is the measure of certainty associated with each
discovered rule. In a simple manner, association rules can be perceived as “if-then”
rules that describe relations between the data. They are extremely advantageous due
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to their exhaustive exploration of the data [Molina et al. 2013]. Moreover, the final
rules returned by this algorithm are usually simple enough to be understood by users.
Nevertheless, some of their inconveniences are that they are affected by noisy data and
have a slight tendency to overfit the data.

Association Rule Learning may be used to discover interesting relationships between
attributes related to BC recurrence. Imagine a BC recurrence dataset comprising the
following attributes: tumor size, age, HR status, race, and family history of BC. In
association rule mining, the objective is to find frequent cooccurrences of items, in
this case, attribute’s values that seem to frequently appear together. An an example,
a relationship between race and hormonal status can be found, if several patients
show associated values for those two attributes—for instance, {Caucasian, HR+} or
{Asian, HR−}. Similarly, associations between larger itemsets are also possible. For
instance, an association rule including race, family history of BC, and tumor size could
be {Caucasian, Yes =⇒! 2cm} meaning that “if the patient’s race = Caucasian and
the family history of breast cancer = Yes, then the patient will have a tumor size =
!2cm.” This rule will have associated measures of Support and Confidence that al-
low researchers and clinicians to assess its relevance with respect to the context and
objectives of the study.

2.3.11. Isotonic Separation. Isotonic Separation, developed by Chandrasekaran et al.
[2005], is a linear programming model that follows the principles of isotonic consistency.
The isotonic consistency constraint assumes an ordering relation of data points in the
feature space, given by S = {(i, j) : ai ≥ aj}, where ai and aj are coordinate vectors that
represent the attribute values of i and j, in all d dimensions (for more details please
consult Ryu et al. [2007b]). Therefore, S consists of (i, j) pairs of ordered data points
such that, considering a two-classification problem:

—If i is classified as belonging to class ω1, then j must be classified as belonging to
class ω1 and conversely.

—If j is classified as belonging to class ω2, then i must be classified as belonging to
class ω2.

As an example application of this scheme to BC recurrence, consider, for instance,
that certain patients have registered values of age, size of tumor, expression of estrogen
receptor, and so on, that cause them to be classified as “recurrent”; then all patients
registering the same (or greater) values are also considered “recurrent.” Isotonic sep-
aration also takes into account misclassification costs, where each misclassified data
point receives a penalty, for instance, α > 0 for each “recurrent” patient classified as
“nonrecurrent” and β > 0 for each “nonrecurrent” patient classified as “recurrent.”
Isotonic Separation minimizes the total cost of misclassification, αni + βnj , where ni is
the number of wrongly classified recurrent patients and nj is the number of wrongly
classified nonrecurrent patients.

2.3.12. Random Forests. Created by Breiman [2001] Random Forests (RFs) instantly
became a commonly used method, mainly due to its simplicity (in terms of training
and tuning) and performance [Trevor et al. 2009]. Similar to the bagging algorithm
(in the sense that it uses individual DTs as individual classifiers), RFs construct
correlated trees. However, in this case, for each tree node, v features out of the total
V input features are randomly selected (considering v ≪ V) and the best split of v
features divides the node. Finally, the forest picks the most voted class, over all the
trees in the forest, either by considering the mode of the classes of the individual trees
(classification) or their mean (regression). By designing a multitude of DTs and later
combining their predictions, RFs decrease the risk of overfitting, usually associated
with individual DTs [Verikas et al. 2011].
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As for BC recurrence scenarios in particular, RFs work very similarly to individual
DTs. The differences are that (i) the selection of training data and input features is
random (this is why they are called “Random”); and (ii) the final class of a patient
is based on the classification results obtained by several individual trees (creating a
“Forest”), which resembles Bagging procedure as well. In the training phase, several
individual Cn DT models are generated, using a random partition of the patients’
dataset. Then, to determine the class of a given test patient, her input data is tested
by all the considered Cn individual trees (as explained in Section 2.3.1). The final class
assignment is determined by majority voting.

2.3.13. Neural Networks. Artificial Neural Networks (ANNs) [McCulloch and Pitts 1943]
are mathematical-computational models inspired by neuronal cells’ functioning, simu-
lating human reasoning. A generic ANN model is composed by three layers: the input,
output, and processing layer (or hidden layer) [Minsky and Papert 1969]. The input
layer receives the data, while the output layer communicates the result. The hidden
layer is responsible for data processing and results’ calculation. ANN analyzes existing
patterns in the information they receive and derive associations between input and
output variables. These associations are used to produce the most correct output for
each input, which is then compared to the correct output and, based on this comparison,
the algorithm resets the associations between the input data and the previously deter-
mined output. This process continues iteratively until the correct result is determined
or the maximum of iterations is achieved. Then, the system memorizes the model of
such association between inputs and outputs in order to classify new cases.

A Multilayer Perceptron (MLP) is a modification of the standard linear perceptron
and can distinguish nonlinearly separable data [Garcı́a-Laencina et al. 2013]. In its
basic form, it is simply a type of feed-forward ANN. It consists of multiple nodes
interconnected in a directed graph, where the input layer passes the input vectors to
the network and the output layer communicates the response. A MLP can have one
or more hidden layers, composed by neurons with nonlinear activation functions (e.g.,
sigmoid, tangential), responsible for the computation of results.

The major advantage of ANN models is that they avoid the construction of “if-then”
rules, and its definition by experts. They also do not need a very large set of data to
produce estimates, though the larger the training set, the more accurate the results.
On the other hand, the training phase can be time-consuming. However, the main dis-
advantage of this type of algorithms is their model’s interpretation—these algorithms
are black-box models, since the associations between data are complex and difficult to
explain.

Consider a BC recurrence problem where patients are described by two features:
“tumor size” and “age at diagnosis,” and the objective is to determine the outcome of
such patients, their “recurrence state” (whether a patient suffers “recurrence” or “no-
recurrence”). An ANN approach based on this scenario could consider two inputs in
the input layer and two outputs on the output layer. It is also necessary to specify the
hidden layers configuration (number of layers and number of neurons each of them
contains), their activation function, and the initial weights of synapses. When training
the artificial neural network, the hidden layers can iteratively learn the weights of the
synapses that achieve the most accurate classification results. This means the ANN
can achieve the best matrix of weights that, multiplied by the inputs “tumor size” and
“age at diagnosis,” achieve the most accurate values of “recurrence state” (1/0), coded
as “recurrence” = [1 0] and “no-recurrence” = [0 1]. It is important to notice that for
classification problems, ANNs do not output a single class assignment, like most of the
described algorithms. For each patient, they will output a “probable answer for each
class,”, for instance, patient’s xi output could be [0.84 0.16], which means patient xi has
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an 84% chance of “recurrence” versus a 16% chance of “no-recurrence.” This result can
be easily transformed to a final assignment of “recurrence state” = 1, so that the results
are comparable with other ML algorithms. When the training stage is complete, the
ANN model (the final matrix of weights) is used to classify the test patients, following
the same logic.

2.3.14. Self-Organizing Maps. Self-Organizing Maps (SOMs) are a type of artificial net-
works that use a form of unsupervised learning (competitive learning) to represent the
input data in a low-dimensional space (a map), typically with one or two dimensions
[Kohonen 1995]. A SOM network is built from a grid of neurons (“nodes”), where each
node has a specific position in the grid and is completely connected to the input layer.
Furthermore, each node is associated with a weight vector, which has the same dimen-
sion as the input feature space: feature vectors of d dimensions will origin nodes with
weight vectors of size n. Like most ANNs, SOMs perform training and testing, or in
this case, training and mapping. In the training phase, SOMs build the map using the
input examples, by placing each one next to the node with the most similar weights,
known as Best Matching Unit (BMU) [Garcı́a-Laencina et al. 2010]. The BMU’s and
adjacent nodes’ weights iteratively adapt every time a new training input is given to
the SOM. In the mapping phase, the test input vectors are classified according to their
distance to the existing nodes in the map, constructed in the training phase.

In general (supervised learning) ANNs, the target is required to guide the update of
the network’s parameters (e.g., weights). Therefore, when training ANNs with a group
of patients xn = {v1(tumorsize), v2(age)}, their class assignment is fundamental: without it,
the model is unable to adjust its parameters. However, for SOMs, the training stage
is absolutely independent of the class assignment. SOMs are completely data-driven,
and thus only the patients data (“tumor size” and “age at diagnosis” in this example) is
required to build the SOM map. The map’s weights are adjusted until each patient is
placed next to its most similar neighbor, in a way, clustering the input data. After the
map is complete and its weights are defined, the training class most frequently assigned
to a neuron in the map becomes its label (majority voting). This labeling allows for the
test patients to be assigned according to their distance to the existing “clusters”: the
nodes that better represent patients with similar characteristics to theirs (most similar
in its weight structure) [Li and Eastman 2006].

2.3.15. Classification Restricted Boltzmann Machines. Restricted Boltzmann Machines
(RBMs) are a variant of Boltzmann machines, with the constraint that there can
be only interlayer connections, that is, there cannot be connections of nodes within
a layer, only between layers. RBMs can be seen as stochastic neural networks, given
their neuron-like units whose activation has a probabilistic element [Fischer and Igel
2014]. They typically have one layer of visible units (inputs), and one layer of hidden
units. They may or may not have a bias unit. Each visible unit is connected to all the
hidden units, and the connections are symmetric, meaning that each hidden unit is also
connected to all the visible units. As mentioned previously, no hidden unit is connected
to another hidden unit, and no visible unit is connected to another visible unit.

Despite being mostly used as unsupervised learners, RBMs can also be used as
supervised, black-box algorithms for classification [Larochelle and Bengio 2008]. Clas-
sification Restricted Boltzmann Machines (ClassRBMs) are a variant of RBMs oriented
to classification. In classification tasks, RBMs are treated as parametric models (con-
sidering that the number of hidden layers is fixed) of the joint distribution between
the layer of hidden units (neurones) and the visible layer of inputs. Based on this joint
probability, ClassRBMs can compute the distribution p(y | x), that is, the probability of
x belonging to y, which allows the determination of the most probable class label (see
Larochelle et al. [2012] for more details).
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Consider a two-class BC recurrence scenario (“recurrence” versus “no-recurrence”),
where patients are characterized by n features (e.g., “hormone status,” “age at diagno-
sis,” “tumor size,” “lymph nodes involvement”). Based on these features, a RBM will
try to discover the latent factors that may explain their expression. In a BC recurrence
problem, a RBM should be able to learn two latent units (hidden units) underlying a
patient’s probability of recurrence, that is, two natural groups in the patients’ training
set, one that corresponds to “recurrence” events, and another to “no-recurrence” events.
During the training phase, the states of the visible units (patients’ input features) are
set and the hidden units are updated accordingly until the network converges (see
Fischer and Igel [2012] for further details). When classifying a test patient, the RBM
takes her feature values {v1(hormone-status), v2(age-diagnosis), v3(tumor-size), v4(lymph-nodes)} and de-
termine which of the hidden units was activated by her characteristics. However, like
for most artificial networks, there is not a specific hidden unit that is completely acti-
vated. All units are activated with associated probabilities. Therefore, if patient xi has
characteristics of a recurrent cancer, the hidden unit representing “recurrence” events
will be activated with a higher probability that the “no-recurrence,” which is how her
class assignment is determined.

2.3.16. Genetic Algorithms. Genetic Algorithms (GAs) are inspired in Darwin’s evolu-
tionary theory which explains the evolution of species through natural selection. As
species evolve in order to adapt to their environment, a GA also uses a “survival of the
fittest” philosophy in order to obtain the result that best fits the data from a population
of individual potential solutions [Mitchell 1996]. A fitness function determines which
solutions should be kept and which should be eliminated. At each generation, a new
population is generated and the fitness values of all individuals are evaluated based on
their performance in the problem domain. Three main genetic operators can actuate
over each selected population, so as to generate the next-generation population—copy,
crossover, and mutation. These mechanisms are repeated, and the population continues
evolving, until the optimal solution (fitness value) is produced, or a stopping condition
is reached (e.g., a maximum number of generations).

In the prediction of a BC recurrence problem, GAs can be used as an optimization
method for other algorithms, such as ANNs. Imagine an initial population of 40 ran-
domly generated ANNs (each ANN will have its own configuration, i.e., a different
number of hidden layers and number of nodes per layer), and a fitness function deter-
mined by the performance of the ANN as a classifier for the BC recurrence problem.
At each generation, each ANN is evaluated, and the ones with the best fitness values
(best classification performance) move on to the next generation; also, new ANNs are
generated by combining different individuals with good results (for instance, using the
configuration of the first hidden layer from one ANN and the configuration of another
hidden layer from another ANN; mutations can also occur, for instance changing the
number of nodes in one specific layer) so that the number of individuals in the popu-
lation remains stable. This process is repeated until an optimal ANN is found or the
maximum number of generations is reached (at this point, the best ANN is selected).

2.4. Sampling Strategies
To evaluate a classifier, researchers need to find its true error rate, that is, the classi-
fier’s error rate in the entire population. However, in real-world applications, it is not
possible to access the entire population. Only a finite set of examples is available, from
which an estimation of the true error rate must be calculated. A naive approach to
this issue of finite datasets would be to use all the available data to train and test the
models. However, this would return an overly optimistic error estimation and serious
overfitting [Marques de Sá 2001]. For that reason, another approach must be pursued:
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the division of the available (and labeled) examples into training and test sets. In the
context of BC recurrence problem, this approach means that the patients records will
be split into two sets: one (training set) used to build the model and another (test set)
used to evaluate the performance of the model. The techniques to divide data into train-
ing and test sets are called sampling strategies and in this section we will review the
ones used in the reviewed works: holdout method, random subsampling, k-fold cross
validation, and leave-one-out [Marques de Sá 2001; Arlot and Celisse 2010; Han et al.
2011; Duda et al. 2012].

2.4.1. Holdout Method. The holdout method simply divides the available examples into
two disjoint sets, according to some percentage. Traditionally, train and test sets are
divided in a 50%–50% partitioning scheme [Marques de Sá 2001], although most au-
thors consider a train/test division of 70%–30% or 80%–20%. Holdout is the simplest of
the sampling strategies, but along with its simplicity come some limitations. In general
ML problems, one of the holdout method’s shortcomings is that it may be subjected to
“unfortunate splits,” and therefore the training data may not be representative of the
population, leading to biased results [Marques de Sá 2001; Bishop 2006]. This issue is
even more evident with scarce and imbalanced datasets that arise in BC recurrence
contexts, where (i) setting aside an even smaller part of the dataset for testing is not ac-
ceptable and (ii) the probability of unfortunate splits is higher, since “recurrence” and
“no-recurrence” classes are not equally represented [Srivastava 2013; Menardi and
Torelli 2014]. To overcome these limitations, several other sampling methods were pro-
posed, namely, random subsampling, k-fold cross validation, and leave-one-out, which
we describe herein.

2.4.2. Random Subsampling. In random subsampling, we consider several p experi-
ments (runs or splits). Each split considers a fixed number of random training and test
examples, selected without replacement. Then, for each split, training and testing is
performed individually. The individual error rates ei (determined using each test set)
are averaged to form the final error estimate, according to Equation (3). When choosing
the samples for each split, the samples cannot be repeated. However, between splits,
the same samples may be selected. Therefore, random subsampling does not guar-
antee that all samples are used for training and testing, which constitutes its major
drawback.

error = 1
p

p∑

i=1

ei. (3)

2.4.3. k-Fold Cross Validation. k-fold cross validation divides the data into k subsets
(folds) that rotate, in order to consider all folds for both training and testing. More
specifically, k-fold cross validation considers k > 1 distinct folds, where k − 1 folds are
used to train a classifier and the left-out fold is used for validation. This is performed
k times, so that every fold is considered in both training and test design. Similarly to
random subsampling, the true error rate is estimated by averaging the each error ei,
obtained from each fold.

The choice of k influences the bias-variance trade-off in performance estimation
through k-fold cross validation. For small values of k, the bias increases, although the
variance is low; for higher values of k, the error estimate is closer to the true error (low
bias), but the variance increases.

2.4.4. Leave-One-Out. Leave-One-Out (LOO) is a particular case of k-fold cross valida-
tion, when k = N, the total number of available examples. Therefore, in LOO, N − 1
examples are used for training, while the held out example is used to test the classifier.
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Table III. Confusion Matrix

Actual Class
Negative Positive

Predicted Class Negative True negative (TN) False negative (FN)
Positive False positive (FP) True positive (TP)

Thus, there are N error estimates that need to be averaged to determine the final
estimate of the error rate.

In LOO, only one sample is used for testing, which leads to a high variance in error
estimation. On the other hand, since all N − 1 are used in the training design, the bias
is low. For that reason, the averaged test set error is a good estimate of the performance
error. When the sample size is low, LOO is the best approach to provide an accurate
estimate of the true error [Bishop 2006; Markov and Larose 2006; Santos et al. 2015].

2.5. Evaluation Metrics Background
The performance evaluation of a classifier is normally based on a confusion matrix
(Table III). This matrix illustrates the actual versus the predicted class in classification
problems, where each column of the matrix represents the instances in an actual class
and the rows represent the instances in a predicted class.

True positives (TP) and true negatives (TN) represent the number of examples cor-
rectly classified in the positive and negative classes, while false positives (FP) and false
negatives (FN) represent the number of misclassified positive and negative examples,
respectively. Accuracy (or inversely, the error rate, which is 1-accuracy), are the two
most widely used measures to evaluate the performance of a classifier. Accuracy repre-
sents how many predictions of the classifier were in fact correct (Equation (4)), whereas
the error rate is the percentage of misclassified examples in total.

Accuracy = TP + TN
TP + TN + FP + FN

. (4)

Nevertheless, the accuracy/error might not be appropriate performance measures
for imbalanced datasets where the class priors are very different, because they will
be strongly biased toward the majority class [He and Garcia 2009]. As an example,
consider the diagnosis of BC recurrence where 98 out of 100 women have nonrecurrent
tumors (negative class), whereas the remaining two have recurrent tumors (positive
class). A classifier that labels all the examples as negative would have an accuracy of
98% and an error of only 2%, which may seem a good classification result, but in fact,
the classifier has failed all the examples of the class of interest (“recurrence” class).
For that reason, an imbalanced scenario requires alternative evaluation metrics that
consider the performance of both positive and negative class independently [He and
Garcia 2009; Longadge and Dongre 2013].

Recall or sensitivity represents how many positive examples the classifier was able
to correctly identify (in the BC recurrence problem this is the percentage of patients
with recurrence identified as such) (Equation (5)).

Recall = TP
TP + FN

. (5)

Specificity represents how accurately the classifier behaves in terms of predicting
the negative class (in the BC recurrence problem this is the percentage of patients
without recurrence identified as such) (Equation (6)).

Specificity = TN
TN + FP

. (6)
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Precision shows the proportion of the correctly predicted positive cases relative to
all the predicted positive ones (in the BC recurrence problem this is the percentage of
patients identified as having recurrence that actually recur) (Equation (7)).

Precision = TP
TP + FP

. (7)

Mean Square Error (MSE) of a classifier represents the difference between a vector of
n predictions (Ŷi) and the true observable vector (Yi) for all n examples (Equation (8)).

MSE = 1
N

n∑

i=1

(Ŷi − Yi)2. (8)

Other measures that can also be used are Area Under the Curve (AUC), F-measure,
and Cohen’s kappa. The AUC values measure how well a classification model can
distinguish between two classes by representing the trade-off between TP and FP
values. AUC is often used when a representative measure of discrimination is needed
and it can even replace accuracy as a performance measure [Huang 2005]. In its turn,
the F-measure is defined as the harmonic mean of precision and recall, providing
a balance between both performance metrics (Equation (9)), that better reflects the
performance of a classifier in the presence of an underrepresented class [Chawla 2010].

F-measure = 2 ∗ precision ∗ recall
precision + recall

. (9)

Nevertheless, F-measure does not take the TN cases into account, and therefore
measures such as the Cohen’s kappa (kappa values) [Cohen 1960] may be used to com-
plement the classifier’s evaluation. The kappa values measure the agreement between
the classifier’s predictions (predicted class) and the real outcomes (actual class), as
follows:

K = P(a) − P(e)
1 − P(e)

with

⎧
⎨

⎩

P(a) = TP+TN
N

P(e) = (TP+FN)·(TP+FP)+(TN+FP)·(TN+FN)
N2

. (10)

N represents the total number of cases, P(a) is the percentage of agreement between
the actual and predicted classes (and is equal to accuracy), whereas P(e) stands for the
chance agreement, the hypothetical probability that the predicted classification out-
comes match the actual outcomes [McHugh 2012]. K can range from −1 to 1: a perfect
agreement will achieve K = 1, while a K = −1 represents a perfect disagreement.
Overall, kappa values lower than 0 indicate no agreement, since K = 0 itself relates to
the agreement expected from chance [Eugenio and Glass 2004].

Note, however, that in the study of imbalanced datasets, researchers are most often
interested in achieving the high TP values and the lowest FN values as possible, since
the positive class is more rare, as explained in Section 2.1. This does not mean that
the TN rate should be overlooked, but explains why kappa values are not commonly
reported as a measure of classifier performance in most ML studies on imbalanced
data in general [Chawla 2010; Kotsiantis et al. 2006; Ferri et al. 2009; He and Garcia
2009; Ganganwar 2012]. This is also true for BC recurrence studies in particular, which
are predominantly imbalanced. In fact, only one of the reviewed studies (Jonsdottir’s
study) has included kappa values as an evaluation metric [Jonsdottir et al. 2008].
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3. APPLICATION OF BC RECURRENCE
In 1997, Mani et al. [1997] compared the performance of rule-based classifiers (DTs
and Association Rules) with a well-known probabilistic classifier (Naive Bayes), in the
identification of tumor features associated with BC recurrence. The data was collected
from a BC center in California, where 887 patients were characterized by demographics
and tumor-specific information, including diagnostic and treatment features. From the
initial set of features, six were handpicked by a medical expert to proceed with the study.
Since only 10% of the collected patients suffered from a recurrence event (85 patients),
the majority class (no-recurrence) was randomly divided into six datasets, in order to
follow a 60%–40% class distribution (no-recurrence/recurrence) in each dataset. NB
proved to be the best approach with an average accuracy of 68.3%, overcoming all
others in the majority of the tested datasets. A particular type of association rule, the
First Order Combined Learner (FOCL) has also stood out with an average accuracy of
66.4%.

This work raises a common controversial topic within the bioinformatics community:
the trade-off between classification results and interpretability. The use of rule-based
classifiers is generally encouraged in medical contexts [Mani et al. 1997; Intrator and
Intrator 2001; Zhou and Jiang 2003], due to the additional information they provide.
However, as shown by this work, they did not offer leading results in terms of classi-
fication accuracy. Moreover, most of the generated rules reflected a somewhat obvious
knowledge domain, which does not constitute a meaningful contribution to medical
experts. From a technical perspective, there are some points to be further discussed
in this work, namely, the feature selection phase, the sampling phase, and the eval-
uation metrics used. Although some works make use of clinical guidance to select
relevant variables to study, they should be clearly stated to allow a proper comparison
with related works. Furthermore, the explanation of the division of patients into the
considered six datasets is too vague. As is stated, it seems that the division of the
majority class (no-recurrence) followed a random subsampling method, which does not
guarantee that all samples are used to model/test the classifiers. Therefore, important
information might be unused due to the sampling phase design. Finally, in spite of
the authors’ efforts to design datasets with more appropriate class distributions, they
still suffer from a considerable imbalance, which requires the evaluation of algorithms
to go beyond the traditional accuracy measure, more efficiently applied to balanced
classes. However, accuracy was the only metric used, which may hint on misleading
conclusions.

In 2003, Jerez-Aragonés et al. [2003] employed a hybrid model, combining ANNs and
DTs, to a database from a hospital in Malaga, Spain, in order to determine whether
a patient will suffer a postsurgical relapse at any period during follow-up time, con-
sidering an endpoint of 5 years. Out of 85 available features (including demographics,
postsurgical and treatment information), a subset of 14 features was selected by med-
ical experts as the most relevant for predicting outcome. The hybrid model was then
used to predict BC recurrence for seven different time intervals from the surgical in-
tervention. The first six intervals are equally spaced (10-month periods), while the
remaining one considered a period of over 60 months. Initially, the dataset was consti-
tuted by 1,035 patients, but records with MD were discarded, resulting in a decrease
of the sample size: from 845 patients for the first interval to 466 patients for the last
interval. Using a holdout method (80% train/20% test), the performance of the proposed
hybrid approach was compared to a Cox statistical technique, commonly used by med-
ical experts. In terms of accuracy, the proposed approach outperformed the Cox model
in all intervals (with results ranging from 93.4% to 96%), except for the last interval
(>60 months), lagging behind by just 0.3%. To complement the accuracy analysis of the
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proposed method, recall, precision, and specificity measures are also included. Recall
varied between 78.7% and 88.7%, while precision ranged from 64.8% to 77.2% and
specificity between 94.5% and 97.2%.

The combination of ANNs with DTs is an interesting approach, since it does not
discard the advantages of one in favor of the other. DTs provide useful information for
selecting the most relevant prognostic factors for each considered interval, while ANNs
are able to use that information to make an accurate prediction, using personalized
topologies for different time intervals. By not choosing one algorithm over the other, the
authors take advantage of each one’s potential, achieving accurate, yet interpretable
results, which is an improvement from the previous illustrated work. Also, in this
work, the authors have in mind that accuracy is not always the best classification
metric, and complement this information with additional metrics (such as sensitivity
and specificity), allowing for a better evaluation of the power of the proposed method.
Nevertheless, some topics remain for discussion. Although the authors mention that
their approach is appropriate for data with a considerable number of features with
missing values, this is not supported by the work itself, since the MD perspective is
ignored. Furthermore, its application for a high number of features is not discussed
yet, since a medical team performed the feature selection phase beforehand.

Amir Razavi et al. followed the idea of combining DTs with other algorithms to im-
prove the prediction of BC relapse during the first 5 years after diagnosis [Razavi et al.
2005]. In 2005, they applied Canonical Correlation Analysis (CCA) as a preprocessing
step, prior to classification, to study the influence of dimensionality reduction in predic-
tion performance. They used a dataset obtained from a Swedish regional center, with
3,949 patients characterized by more than 150 features. Following the same method-
ology as the previous discussed works, the feature selection phase was performed by
a team of medical experts, resulting in a decrease of the feature space to only 17 pre-
dictors. However, unlike previous works, values for MD fields were imputed using the
EM algorithm [Razavi et al. 2005] (explained at the end of Section 2.2).

A 10-fold cross validation procedure was used to evaluate the performance of three
different predictive models: (i) DT coupled with CCA, (ii) DT without any preprocess-
ing step, and (iii) DT with MD imputation as the only preprocessing step. The results
showed that DT coupled with CCA overcame the other two approaches in terms of
accuracy (67%) and specificity (63%); yet lagging behind both in terms of sensitivity,
which is generally not a good indicator. However, it is important to state that this
solution yields trees with only 10% the size of those without preprocessing, resulting
in a simpler system, and improving interpretability. Still, it would be interesting to
make a comparison between rule-based models and other types of classifiers, and their
behavior when coupled with the mentioned preprocessing strategies. In 2007, the same
authors applied the previously developed combined model (CCA + DT) to predict BC re-
currence within 4 years after diagnosis [Razavi et al. 2007]. The used dataset consisted
of 3,699 patients (with absent observations), where 664 (18%) suffered recurrence in
the first 4 years of follow-up. MD imputation was performed using Multiple Imputation
(MI), and 10-fold cross validation was used to estimate performance error. A hundred
cases were previously separated from the initial dataset (by stratified random sam-
pling) to validate the developed model against the predictions of two medical experts
(Oncologists 1 and 2).

Although the comparison of the Area Under the Curve (AUC) values between the
three approaches (DT and two oncologists) did not significantly differ, a more detailed
analysis on the performance results is required. The authors present the confusion
matrix for the validation set of 100 patients (81 without and 19 with recurrence) but
at no point do they make a critical comparison of the results. In fact, despite a higher
accuracy (82%) and precision (57.1%), DT is overpowered by one of the two medical
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doctors collaborating in the study (Oncologist 2) in terms of AUC values, specificity,
and F-measure. With a training and validation set presenting such a high imbalance
(80% without recurrence, 20% with recurrence), the sensitivity should assume a pivotal
importance. Sensitivity results are poor for DT (21.1%); however, Oncologist 1 had an
even lower rate of sensitivity (5.56%), despite having a higher percentage of specificity
(97.5%).

The poor results of DTs in this work might be explained by the dominance of “no-
recurrence” cases in the training model. Although the authors discuss the usage of
sampling strategies to balance the dataset, they do not apply them, presenting ar-
guments such as the small sample size or the lack of representativeness they would
generate. However, this should have been considered since it is not clear that the
proposed approach is the most suitable to predict BC recurrence: Oncologist 2 had a
sensitivity rate of 57.8% without severely compromising precision (50%), by analyzing
patient records with MD.

In the same year, Sun et al. [2007] combined clinical and genetic information to cre-
ate a “hybrid signature,” capable of predicting BC recurrence in the first 5 years after
diagnosis. This work makes use of microarray data, publicly available in the Nature
website [Nature Publishing Group 2015]. The dataset includes 97 patients, 46 of which
suffered recurrence, while 51 remained recurrence-free. According to previous works
using this dataset [Guo-Zheng 2011], it also contains MD, although this perspective
is not addressed throughout the work. Preprocessing steps before classification in-
clude data standardization (Min-Max) and a feature selection algorithm (I-RELIEF),
developed earlier by Sun [2007]. Four different approaches are tested: one using only
genetic markers; another using only clinical markers; a hybrid signature (including
genetic and clinical information); and St. Gallen’s criterion [Harbeck et al. 2013], a
consensus criterion to determine recurrence used in oncology guidelines. To compare
the performance between the approaches, the authors specified a threshold for each
one, in a way the sensitivity is 90% for all. Then, the comparison was done by ana-
lyzing the corresponding specificity values: 47%, 48%, 67%, and 12% for genetic-only,
clinical-only, hybrid signature, and St. Gallen approaches, respectively. The Receiver
Operating Characteristic (ROC) curves for the first three approaches were also com-
pared, with the hybrid signature outperforming the other two (which in turn showed a
similar behavior).

It must be noted that this is the work that includes the smallest number of patients.
With a small sample size, there is a higher danger of overfitting the training data.
To avoid this problem, a nested Leave-One-Out Cross Validation (LOOCV) is adopted
[Sun et al. 2007]. In a nested cross validation, an inner loop is responsible for the selec-
tion of the optimal classification parameters (for I-RELIEF in this case), while in the
outer loop the classification of the held-out sample is performed. Linear Discriminant
Analysis (LDA) is used in the classification task (outer loop), since it does not require
the estimation of hyperparameters, and thus makes the experiments computationally
less expensive.

Before Sun, some authors had previously attempted to combine genetic and clinical
information, but rather unsuccessfully [Dettling and Buhlmann 2004; Gevaert et al.
2006], which reinforces the achievements of this work. On one hand, one may argue that
67% is far from an optimal specificity result. On the other hand, it must be noted that
the proposed hybrid signature improved the specificity of the remaining approaches
by nearly 20% to 60%. This proves that the combination between genetic and clinical
information is a suitable approach to determine the prognosis of BC patients, even
though combination strategies are difficult to design.

Also in 2007, Ryu et al. [2007a] used the Ljubljana BC dataset (available in UCI
Repository [Lichman 2015]) to compare several methods to predict BC recurrence in the
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first 5 years after removal of tumor: isotonic separation, robust Linear Programming
(LP), and three variants of DT (C4.5, OC1, and QUEST), SVM, AdaBoost, and learn-
ing vector quantization. The dataset contains 286 patients, where 201 (70.3%) did not
suffer recurrence and the remaining 85 (29.7%) had recurrence events. Each patient is
characterized by nine features, and there are some missing values. In particular, “node-
caps” and “breast-quad” are responsible for the nine missing observations present in
this dataset. From those nine missing values, five belong to the “no-recurrence” class,
while the other four belong to the “recurrence.” All the methods were evaluated accord-
ing to a holdout method (70% for train and 30% for test), except for QUEST decision
three, which has its own sampling scheme (threefold cross validaton). The results
are presented in terms of error rate; however, to make them comparable with the re-
maining works, we translated them to accuracy values (1 − error). Isotonic separation
outperformed all others with 80% of accuracy. Only the accuracy (conversely, the error
rate) was determined for each classifier, which may be considered a limitation, since
the dataset is known to have a 29.7%/70.3% of recurrence/no-recurrence distribution
[Lichman 2015]. Moreover, a backward sequential elimination process for feature selec-
tion showed that age, menopause status, node capsules, tumor grade, and irradiation
were the most relevant features for recurrence.

The most comprehensive study in terms of tested classifiers, feature selection al-
gorithms, and performance measures was performed by Jonsdottir et al. [2008], in
2008. They implemented 17 classification algorithms, including NB, several variants
of DT and other rule base classifiers (OneR, PART, Jrip), LR, and some metaclassifiers,
including boosting, bagging, and ensemble schemes. Moreover, this work also uses a
wide range of feature selection algorithms, such as OneR, Correlation-based Feature
Selection (CFS) method, Las Vegas Filter (LVF) algorithm, RELIEF, information gain,
and C4.5 decision tree. Furthermore, the existing knowledge domain (from previously
published works in BC, medical experts, and authors’ experience) is also explored to
select the most relevant features. However, the results from these feature selection
methods are not discussed. The authors do not state if one returned better results than
the other, or, alternatively, if each one’s results were combined to select a final subset
of features. The classification results were evaluated in terms of accuracy, kappa val-
ues, AUC, sensitivity, and specificity. The algorithms were run on a relatively small
dataset (257 patients) with high dimensionality (400 features), obtained from the Uni-
versity Hospital of Iceland (Rose dataset). Jonsdottir’s study focused on two main goals:
(i) predicting BC recurrence within 5 years after diagnosis and (ii) predicting recur-
rence risk (low, intermediate, or high) within the same time period. The latter is out of
the scope of this review, although the recurrence risk, not as outcome but as predictor,
was also included in (i), in order to determine if the inclusion of this feature had any
influence in predicting recurrence events. In order to fulfill objective (i), the authors
conducted a feature selection phase that resulted in three different datasets:

(1) Base-DS, including 98 features selected according to the experience of a medical
expert and the results of the feature selection methods;

(2) Med-DS, with 22 features selected from Base-DS by a medical doctor; and
(3) Small-DS, where only five features were manually selected from Base-DS.

The distribution of recurrence/no-recurrence events was 28.4%/71.6%, exhibiting a
considerable imbalance between classes, which the authors have counteracted by ran-
dom subsampling of patients. The MD perspective was not directly addressed (there is
no information on absent observations in the data); however, all the used classification
algorithms can handle MD directly.

A 10-fold cross validation scheme was used across all classifiers for evaluation. Only
the results for the algorithms with the best results were discussed in this work, namely,
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NB, DTs, and PART. However, the incorporation of results for the remaining ones would
have been interesting to allow for a cross-sectional evaluation among different works.
In terms of accuracy, and considering the “risk of recurrence” as an extra feature, DT
overcomes the other two approaches in Base-DS (76%) and Med-DS (77%), lagging
behind PART in Small-DS by just 1% (PART achieves 80% of accuracy). When the “risk
of recurrence” is added, DT still maintains its superiority in both Base-DS (75%) and
Med-DS (76%), although lagging behind NB in Small-DS by just 1% (NB obtains a 78%
accuracy). Regarding AUC values, NB outperforms the other two approaches with and
without considering “recurrence risk” as an extra feature, although its superiority is not
highly pronounced. DT obtains sensitivities of 48%, 45%, and 37% for Base-DS, Med-
DS, and Small-DS, rivaling with PART, whose results were 48%, 33%, and 37% for the
same datasets, without considering “recurrence risk.” When the extra feature is added,
both approaches still obtain similar results: 48%, 40%, and 30% for DT versus the 51%,
40%, and 32% of PART. Finally, in terms of specificity, all three approaches obtain very
similar (and high) results—from 87%–96% for NB, 86%–96% for DT, and 78%–97%
for PART—which makes it harder to assess the best one. The authors are not very
conclusive in assessing the best approach, suggesting either NB or C4.5 DT are both
suitable to be selected as the best classifier. It can be discussed that DT achieves the
best performance for Base-DS and Med-DS, while Small-DS benefits the most by using
PART. However, in a general view, DT seems to be the best approach, since it always
achieves higher sensitivity results, and higher or comparable specificity. Furthermore,
they have the advantage of producing interpretable rules, and as the authors mention,
may be clearly visualized when the dataset is small. In addition, the risk of recurrence
did not improve the classification results; nor did the presence of a high number of
features: the results are similar across all datasets. Therefore, it can be discussed that
small dimensional spaces are suitable to address the BC recurrence context, having as
main advantage the reduced complexity of the classification models.

The study developed by Fan et al. [2010] in 2010 targeted the internationally avail-
able SEER dataset [SEER Research 2015], where 46,996,113 patients are described
by a set of 117 features. The SEER Public-Use Data used in this work includes pa-
tients diagnosed with BC from 1973 to 2005; however, the endpoint for determining
recurrence is not specified. Records with MD were ignored, but the number of patients
kept in the final dataset is not mentioned. The feature selection phase was performed
according to the validation of medical experts, with 13 features being selected as final
inputs. A holdout method (80% train/20% test) was used to evaluate the performance
of five different algorithms, namely, ANN and other four variants of DT. The results
show that all the DT variants outperformed ANN in terms of accuracy, with the best
accuracy results being achieved by C5.0 algorithm (71.17%). However, ANN had the
highest precision rate for recurrence events (77.79%), while CART had the highest
precision rate for no-recurrence events (73.75%).

Although nearly all accuracy and precision results are above 70%, a more detailed
discussion should have been presented. Since the final number of patients included
in the study (and of those, how many did or did not recur) is unknown, the readers
do not have the necessary information to evaluate the results. If the class distribu-
tion of recurrence and no-recurrence is not balanced, the accuracy results are not
reliable. Furthermore, although precision results are a common finding in most ML
studies, they are so in combination with recall results, which translate the sensitivity
of the classifiers. This information is not presented in the paper, and is of much im-
portance when the objective is to accurately predict a particular class of interest, in
this case, the “recurrence” class. Furthermore, no single classifier overcomes all oth-
ers in the three considered metrics (accuracy, precision for “recurrence,” and precision
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for “no-recurrence”). Therefore, it is not possible to determine which is the most suitable
approach.

Belciug et al. [2010] compared the performance of k-means, SOM, and cluster net-
work in the detection of BC recurrence events, using the WPBC dataset [Lichman
2015]. Each record of WPBC dataset represents the follow-up data for one patient.
This dataset includes invasive BC cases with no evidence of distance metastases at the
time of diagnosis, from 1984 to 1995. Therefore, prior to any classification study, the
dataset should first be filtered to translate a defined endpoint (e.g., recurrence within
2 years after diagnosis). The authors do not specify such in their research, and thus
the true BC problematic cannot be identified. The WPBC dataset is available from
UCI Repository, and contains 198 (47 recurrent and 151 nonrecurrent) patients char-
acterized by 34 features. These features describe the characteristics of the cell nuclei
observable in an image of the patient’s breast mass. According to the dataset descrip-
tion [Lichman 2015], it contains absent observations. Specifically, “lymph node status”
is missing in four cases (three “nonrecurrent” and one “recurrent”). However, the MD
perspective is never mentioned in this work. From the 34 features in the original
dataset, the authors chose 12 to be used, discarding redundant information unneces-
sary to the clustering algorithms. The feature selection process is not mentioned: the
features are selected according to the authors’ assumption on their relevance to the
study, without further elaboration on the subject. The authors compare both training
and testing performance between the used algorithms, except for k-means, where only
the training performance is assessed. For SOM and cluster network, a 10-fold cross
validation procedure is used, and the accuracy results are then averaged to achieve the
final classification results. Cluster network obtained the highest accuracy results in
both training (83%) and testing (78%), versus the 72% and 67% obtained for SOM and
the 62% (training) for k-means. On one hand, cluster network has shown an efficient
behavior in predicting BC relapse, achieving accuracy results higher than the majority
of the discussed works. On the other hand, this paper fails by disregarding the clear
class imbalance between “recurrence” and “no-recurrence” events (76.3%/23.7%). In
such cases, as previously mentioned, accuracy is not an appropriate metric, and other
metrics, such as sensitivity and specificity, should be presented.

Furthermore, the fact that the MD perspective is not addressed is quite intriguing,
since clustering methods cannot generally analyze data points with MD, without fur-
ther constraints. Usually, if no specifications are provided to the algorithm, data points
with MD are discarded, and thus not clustered. Therefore, if MD has not been handled
in any way, the results may be somewhat biased. Also, the 10-fold cross validation
procedure could have been extended to k-means as well, for testing purposes. Using a
LOO approach, each sample would be held out while the remaining were used for train-
ing. Then, the held-out sample would be assigned to a class according to its proximity
to the cluster centers, by majority voting, for instance. This would provide the test-
ing performance for k-means, making it comparable with the remaining approaches.
Furthermore, the authors raise a question that is not further discussed in the paper:
“how many clusters are needed so that the clustering process is optimal?” [Belciug
et al. 2010]. SOM and cluster networks do not require an a priori specification of the
number of clusters, and thus the data points are labeled according to a majority voting
of the points belonging to the cluster they are assigned. This could also be achieved by
k-means, where different numbers of clusters had to be tested. The fact that k-means
was predefined for k = 2 may help explain its poor results, when compared to the other
two algorithms, that do not have that limitation. In conclusion, despite proving good
results, this work raises some technical questions.

In the same year, Trumbelj et al. [2010] addressed the problem of BC recurrence in
two directions: as a classification problem, predicting recurrence/no-recurrence events
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within 10 years after surgery, and as a regression problem, determining how many
years would it take until cancer reappears. The latter is out of scope of this review.

Regarding the prediction of recurrence events, Strumbelj compared the performance
of several well-known classifiers, namely, NB, DTs, SVMs, RFs, and Multilayer Percep-
tron (MLP) with the evaluation of two oncologists. A bagging procedure coupled with
NB was also considered. The initial data was provided by Ljubljana Institute of Oncol-
ogy (not to be confused with the Breast Cancer Dataset), consisting of 1,035 patients
characterized by 32 features. After removing some features (due to their redundancy)
and some patients (whose follow-up was inferior to 10 years), the final dataset included
881 patients and 13 features, all categorical. Although the authors state that some of
the collected features are redundant, and that not all features are considered for classi-
fication, the criteria to select the most relevant features is not depicted. Furthermore,
no information was given regarding MD.

The distribution of recurrence/no-recurrence events is 51%/49%, thus class imbal-
ance is not a constraint and accuracy is considered an appropriate evaluation metric.
A 10-fold cross validation scheme was used to access the performance of the chosen ML
algorithms, where DT, NB (both as a standard formulation and coupled with a bagging
scheme), and RF performed similarly with accuracies ranging from 67.4% to 68%, out-
performing SVM (59.9%) and MLP (60.8%). Therefore, the best approaches (DT, NB,
and RF) were further compared with the predictions of two medical experts (two oncol-
ogists), using a validation test of 100 randomly chosen patients. NB classifier achieved
the best results (both standard and considering bagging) with an accuracy of 70%.
However, overall, the accuracy results were very similar, with DT and RF obtaining
accuracies of 67% and 68%. Both oncologists lagged slightly behind the ML algorithms,
with accuracies of 63% and 65%. In fact, ML results did not prove to be significantly
higher than the predictions of medical experts. The fact that the final dataset contains
only categorical variables is a topic for discussion in this work. The authors state that
their “preliminary analysis” has not shown significant differences between numerical
or discretized versions of some features in prediction results, although these results
are not presented in the work. This may explain the poor results achieved by SVM and
MLP, which generally tend to deal better with continuous variables [Kotsiantis 2007;
Irshad et al. 2014]. However, it has to be stated that the main objective of this work
was not to achieve optimal classification results. More than building a successful model
to predict BC recurrence, the aim of this work is to improve the interpretability of ML
models and develop a method to assess their reliability. This topic is also out of scope
of this study; however, it highlights the increasing interest of ML experts in develop-
ing accurate, yet still easy to use and interpretable strategies to be used by non-ML
experts, in particular, medical doctors, when dealing with a health care context.

In 2012, Kim et al. [2012] studied the application of SVMs, ANNs, and the Cox-
regression model to the prediction of BC recurrence within 5 years after surgery. To
assess the performance of the proposed approaches, three well-known BC prognostic
models were also selected: St. Gallen’s guidelines [Harbeck et al. 2013], Nottingham
Prognostic Index (NPI), [Galea et al. 1992], and Adjuvant! Online [Olivotto et al. 2005].
The initial dataset was composed by 1,541 patients from a tertiary hospital in South
Korea. However, after discarding patients with incomplete follow-up, late-stage, and
male BC patients, as well as patients suffering from other types of cancers (besides
BC), the study population consisted of 679 patients, with 195 recurrence cases (28.7%)
and 484 no-recurrence cases (71.3%). Out of 193 available features, seven were cho-
sen to be included in the prediction models, namely, histological grade, tumor size,
number of metastatic lymph nodes, ER status, Lymphovascular Invasion (LVI), local
invasion of tumor, and number of tumors [Kim et al. 2012]. They were selected before-
hand by the authors in collaboration with medical experts, and further refined based
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on Kaplan-Meier and Cox-regression analysis. The results were evaluated in terms of
accuracy, sensitivity, specificity, precision, AUC, and Negative Predictive Value (NPV),
using a holdout method (70%–30%). Regarding the computational models, SVMs and
ANNs performed similarly, outperforming the Cox model except in terms of specificity:
73%, 52%, and 94% for SVMs, ANNs, and Cox model, respectively. ANNs achieved the
best sensitivity (95%) and precision (80%) results, followed by SVMs with 89% and
75%, respectively. However, SVMs proved to be the best approach, outperforming the
others in terms of NPV (89%), accuracy (84.58%), and AUC (0.85). The authors further
compared the performance of SVMs with the previously mentioned prognostic models:
St. Gallen’s, NPI, and Adjuvant!. St. Gallen’s achieved the highest sensitivity and NPV
(100%); however, it had poor results in the remaining metrics. Similarly, Adjuvant! also
returned high sensitivity and NPV results (95% and 83%), although its superiority was
not verified for the other metrics. The same may be said of the Cox model, which had
the highest specificity (94%), but failed to keep its advantage over the other perfor-
mance metrics. Thus, SVM proved a superior performance over the “classic” models for
the prognosis of BC recurrence. The authors highlight that although ML algorithms
generally achieve higher performances, their use in clinical practice is still very limited
“because they cannot be easily calculated with a traditional calculator.” In our opinion,
they are right in that ML are currently not used in practice, despite their undoubtedly
higher performance. However, we do not agree on the reason. The real reason boils
down to the interpretability again. Even if tools to calculate ML predictions are made
available, medical doctors will not “trust” models they cannot fully understand and in-
terpret. Another point mentioned by the authors is that ML algorithms can be adjusted
to data. For instance, SVM hyperparameters may be adjusted to different subject pop-
ulations. This may bring an important advantage over traditional prognostic models
that impose a universal prediction model for all races or countries.

In that same year, Salama et al. [2012] compared the performance of DTs, MLP,
SVMs, NB, and KNN in the prediction of BC recurrence using the WPBC dataset (sim-
ilarly to Belciug et al., the endpoint is not defined). The fusion between classifiers was
also explored, to assess if a multiclassifier approach could bring some benefit in terms
of classification performance. The comparison between classifiers was performed using
a 10-fold cross validation sampling scheme, and evaluating their accuracy. Among the
five considered classifiers, SVM and DT outperformed all others, with an accuracy of
76.3%, followed by MLP, KNN, and NB with 66.5%, 64.4%, and 50.5%, respectively.
Moreover, a fusion analysis of two, three, and four classifiers was conducted. The first
fusion considered SVM coupled with the remaining: SVM-NB, SVM-MLP, SVM-DT, and
SVM-KNN. All the combinations have achieved the same accuracy results: 76.3%. The
fusion of three classifiers considered SVM and DT coupled with the remaining: SVM-
DT-NB, SVM-DT-MLP, and SVM-DT-KNN. Once again, all the combinations showed
the exact same accuracy: 76.3%. Finally, the third fusion considered the coupling of
SVM, DT, and MLP with the remaining: SVM-DT-MLP-KNN and SVM-DT-MLP-NB.
The combination of SVM-DT-MLP-KNN resulted in an improvement of accuracy, 77.3%,
while SVM-DT-MLP-NB did not improve the previous results, achieving an accuracy of
74.2%. In conclusion, the fusion of SVM, DT, MLP, and KNN proved to be superior when
compared to the remaining combinations of classifiers and the other setups of stand-
alone classifiers. This work shows that the combination of classifiers may be beneficial
to the classification performance. However, the authors do not mention what type of
combination was used (using probability results, majority voting, or combination rules,
for instance). Also, and as previously mentioned, WPBC is an imbalanced dataset,
and therefore more appropriate performance metrics would be required, namely, sen-
sitivity and specificity. Finally, the MD perspective is also ignored in this work, which
constitutes another of its limitations.
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Also in 2012, Murti [2012] used three rule-based classifiers to predict BC recurrence
within 5 years after surgery, namely, Repeated Incremental Pruning to Produce Error
Reduction (RIPPER), Decision Table, and Decision Table with Naive Bayes (DTNB).
To conduct the experiments, the database from the Oncology Institute of Ljubljana
(Breast Cancer Dataset) was used. The initial dataset was preprocessed to remove
missing values, and although the final number of patients included in the study is not
mentioned, we assume that all nine records with MD are eliminated, thus resulting
in a final dataset of (286 − 9) = 277 patients. The algorithms are compared in terms
of precision, recall, F-measure, and AUC, for both “no-recurrence” and “recurrence”
events. As previously mentioned for the case of Fan et al., when the objective is to pre-
dict recurrence (and considering that this class always has a lower number of cases),
it should be defined as the positive class, and the metrics should be analyzed having
that in mind. Only such analysis would provide a meaningful and suitable comparison
with the other studied works. For that reason, only the performance results of the “re-
currence” class are analyzed and compared within this review. Accordingly, RIPPER
obtained 72.3%, 36.5%, 84.6%, 50%, 0.4, and 0.58 in terms of accuracy, sensitivity, speci-
ficity, precision, F-measure, and AUC, respectively. In turn, Decision Table achieved
72.7%, 23.5%, 91%, 53%, 0.33, and 0.64 for the same metrics. Finally, outperforming
these approaches, DTNB returned an accuracy of 75.2%, sensitivity, specificity, and
precision of 36.5%, 89.6%, and 59.6%, respectively, while achieving an F-measure of
0.45 and AUC of 0.68. Although DTNB outperformed the other approaches, achieving
a good accuracy (75.2%) and specificity (89.6%), the sensitivity results are very poor,
being among the worst approaches reviewed. Similarly, the F-measure and particularly
the AUC results show that this is not a feasible approach to predict BC recurrence,
being only slightly better than random guessing.

In 2013, Tomczak [2013] used the Classification Restricted Boltzmann Machine
(ClassRBM) to predict BC recurrence within 10 years after surgery and determine
input features (symptoms) relevant for disease reappearance. Several methods for
learning ClassRBM are discussed, namely, DropOut, Drop Connect, and DropPart
[Tomczak 2013]. These algorithms are compared to classical approaches such as NB,
SVM, RF, and CART (coupled with AdaBoost, Bagging, and LogitBoost). This work also
counted with the collaboration of two oncologists in order to provide a comparison of
ML techniques with the opinion of medical experts. A holdout method (70% train-30%
test) was used across all computational methods, while predictions from oncologists
were obtained using 100 cases of the test set. Overall, the computational approaches
achieved better accuracy results than the medical experts, except for SVM, which per-
formed poorly. ClassRBM and ensemble approaches had very similar results; however,
from all the considered algorithms, the ensemble LogitBoost + CART outperformed all
others with an accuracy of 75%. This work is somewhat of a follow-up of Strumbelj’s
study, using the same dataset provided by the Oncology Institute of Ljubljana (not
Breast Cancer Dataset). However, in Tomczak’s study, the final dataset is composed of
949 patients (there are more patients with a minimum follow-up of 10 years) and 15
features (the feature selection process is not discussed). These 15 features include all
13 used by Strumbelj and two more, regarding the application of two different types
of therapy (cTherapy and hTherapy). All input features were binarized, resulting in a
dataset composed of 55 binary features. As discussed in Strumbelj’s study, the binariza-
tion of all input features could explain the poor performance of SVMs. The distribution
of “recurrence”/“no-recurrence” events is not depicted; however, we assume it is very
similar to Strumbelj’s estimates (51%–49%). The authors do not perform a thorough
discussion on the best approach to predict BC recurrence. Nevertheless, they highlight
the ClassRBM’s ability to retrieve relevant information regarding the most important
input features while also achieving a high classification performance.
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Pawlovsky and Nagahashi [2014] proposed a method based on scoring to select the
best configuration to be used in KNN classification of WPBC dataset (the endpoint was
not defined). In their approach, patients with MD are removed from the study (four
patients), and only 32 features are kept. After discussing the effects of different com-
binations of training size and number of neighbors and runs considered, the authors
present their scoring scheme and perform its validation by addressing the BC recur-
rence problem. The best classification setting is chosen according to the preprocessing
method used (raw data, standardization, or normalization), number of k neighbors,
number of runs, sample size for classification, and average, maximum, minimum, and
standard deviation of the accuracy results. Their strategy provided the best results
for a configuration using raw data, 19 neighbors, 80% of samples in classification,
and 100 simulation runs. These configurations achieved a mean accuracy of 76%, and
minimum and maximum values of 62% and 90%, respectively. It is also important to
note that, overall, the preprocessing method used does not significantly affect the final
classification results.

Although discussing an interesting topic, this work is more focused on finding a strat-
egy to select appropriate KNN configurations than addressing the particular problem
of BC recurrence: no feature selection is performed and the class imbalance problem is
not addressed (again, only accuracy results are presented). Nevertheless, it takes into
account the existence of absent observations by removing them. The generalization of
this work could possibly be a topic for further research, and its extension to include
sensitivity/specificity results could possibly be a more suitable approach to the BC re-
currence problem. However, as discussed in Section 2.3, it must be noted that KNN is
a lazy learner, as it makes local approximations, without further generalization, and
thus the classification task for this algorithm is very time-consuming. With a consider-
able amount of data, given the number of different combinations to be tested, it could
become infeasible for real-time applications.

In the same year, Beheshti et al. [2014] tackled the principles of Genetic Program-
ming, by comparing the performance of several genetic approaches when coupled with
MLP: Centripetal Accelerated Particle Swarm Optimization (CAPSO), Particle Swarm
Optimization (PSO), Gravitational Search Algorithm (GSA), and Imperialist Compet-
itive Algorithm (ICA). These four hybrid approaches (CAPSO-MLP, PSO-MLP, GSA-
MLP, and ICA-MLP) were applied to nine medical datasets targeting different dis-
eases. Among them is the WPBC dataset [Lichman 2015], previously presented. Before
running the simulations, the dataset was normalized and absent observations were
handled with mean imputation. All approaches were evaluated in terms of MSE, AUC,
accuracy, sensitivity, and specificity, following a holdout scheme (80% train-20% test).
GSA-MLP achieved 0.167 of MSE, 0.55 of AUC, and 79.3%, 7.86%, and 80.23% of accu-
racy, sensitivity, and specificity. In turn, ICA-MLP and PSO-MLP obtained MSE results
of 0.177 and 0.173 and AUC results of 0.57 and 0.6, respectively. In terms of accuracy,
sensitivity, and specificity, these approaches have returned the same results: 78.3%,
43%, and 83%. CAPSO-MLP achieved an MSE of 0.170 and an AUC of 0.63 while re-
turning accuracy, sensitivity, and specificity results of 80.3%, 52.3%, and 83.4%, clearly
outperforming all others and being considered the most suitable approach for unseen
data.

According to the authors, the adjustment of the parameters of the PSO algorithm
is time-consuming. The CAPSO approach was created to solve this problem, by using
less a priori parameters, resulting in a simplified tuning process (more automated).
The inclusion of the original PSO approach was an important step, to evaluate if the
new technique (CAPSO) improves the results by comparison. However, applying only
this type of algorithms does not provide a real assessment of their performance. There
should have been a setup including a more traditional approach as a baseline for
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comparison, for example, backpropagation, in accordance with other authors cited in
this work [Chau 2007; Socha and Blum 2007; Ozkan et al. 2011; Ahmadi et al. 2013;
Mahmoudi et al. 2013]. This would present the opportunity to compare the two differ-
ent methodologies, verifying whether the proposed algorithms generate better results.
Moreover, the chosen algorithms do not agree with the literature review of this article:
GSA is not referred to in any of the cited articles, while others were inexplicably left out
(e.g., Artificial Immune System, Ant Colony Optimization, and Artificial Bee Colony).
ICA and GSA happen to be the two most recent approaches mentioned, but there was
no explicit indication of the reason to choose them. Nevertheless, the used algorithms
are thoroughly explained, which is especially important in modern techniques.

Still in 2014, Chaurasia and Pal [2014] investigated the performance of DDTs, ANNs,
and LR in BC recurrence within 5 years after surgical intervention, using the previously
described Breast Cancer Dataset to conduct their experiments.

The results were evaluated through a 10-fold cross validation procedure, by deter-
mining the accuracy, true positive rate, false positive rate, precision, and recall for
both “recurrence” and “no-recurrence” classes. As discussed in previous works (Fan
et al., Murti), the class of interest is “recurrence.” For that reason, and to allow an
appropriate comparison between all the research works, we restrict our analysis to
accuracy, sensitivity, specificity, and precision results considering “recurrence” as the
positive class. In terms of accuracy, specificity, and precision, LR performed the best,
with 74.5%, 92.5%, and 64.3%, respectively, versus the 71.3%, 92%, and 54.3% of DT
and 73.8%, 88.6%, and 58.9% of ANN. Regarding sensitivity, ANN was the best ap-
proach, with 38.8%, over the 31.8% and 22.4% obtained by LR and DT, respectively.
Although ANN achieves the best sensitivity results (is the best classifier in identifying
recurrence events), LR is overall the best approach, outperforming all others in terms
of accuracy, specificity, and precision. The authors have also analyzed the impact of the
chosen feature to recurrence prediction, which revealed that tumor grade is the most
explanatory feature, followed by lymph nodes involvement, node capsules, tumor size,
irradiation, age, breast quad, breast, and menopause. As many of the works use WPBC
dataset, the fact that this work neglects the MD perspective is its main weakness.

Table IV presents a résumé of the ML algorithms used in each research work and the
performance results of the best approach (highlighted in bold). The results are mea-
sured in terms of accuracy (Acc), sensitivity (Sen), specificity (Spe), and AUC values.
The strategies used for data sampling and handling MD are also depicted.

Based on the 17 analyzed revised works, and despite the fact that a direct comparison
between these works needs to be performed with due reservations (as they use different
algorithms and approaches as well as distinct datasets), there seems to be a slight ad-
vantage of approaches using combined ML methods over approaches using a single ML
method. Combined approaches present maximum results of 96%, 90%, and 97.2% for
accuracy, sensitivity, and specificity, while single approaches reach maximum results
of 84.58%, 89%, and 96%, respectively (the AUC metric was not compared since only
five of the 17 revised works present such information). This tendency (combined ap-
proaches achieving better results than single ones) is in fact stated in the literature for
other BC classification problems, as illustrated in the works developed by Abreu et al.
[2013a] and Srinivas and Mohan [2015], or as a general ML approach [Stefanowski
2005].

4. DISCUSSION
Predicting BC recurrence is a very important challenge for oncological clinicians
because it has direct influence in their daily practice, for example, in choosing the
most beneficial treatment for a patient. Over the past decade, several works have tried
to propose suitable approaches to model BC behavior; however, after performing this
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Table IV. Comparison of ML Algorithms (Bold Indicates the One That Presented the Best Performance),
Achieved Results and Sampling Strategies used in the Analyzed Studies

Publications Algorithms Acc Sen Spe AUC MD
Sampling
Strategy

Mani et al.
[1997]

NB, CART, C4.5, C4.5
rules, FOCL

68.30% – – – – Stratified
Random
Subsampling
Construction of
six datasets
(40%–60%)

Jerez-
Aragonés
et al. [2003]

ANN+DT 93,4%–
96%

78,7%–
88.7%

94,5%–
97.2%

– Removed 10-fold Cross
validation

Razavi et al.
[2005]

C4.5+CCA, C4.5 +
EM, C4.5

67% 80% 63% – EM 10-fold Cross
validation

Razavi et al.
[2007]

C4.5+CCA, Two
oncologists

82% 21.10% 96.30% 0.76 MI 10-fold Cross
validation
Stratified
Random
Sampling for
validation

Sun et al.
[2007]

LDA+hybrid,
LDA+genetic,
LDA+clinical,
St.Gallen criterion

– 90% 67% – Unknown LOO

Ryu et al.
[2007a]

Isotonic Separation,
Robust Linear
Programming, DT
(C4.5, OC1, QUEST),
SVM, AdaBoost,
Learning Vector
Quantization

80% – – – – Holdout
(70%–30%)

Jonsdottir
et al. [2008]

C4.5, NB, LMT, REP
tree, RF, SVM, Log,
Slog, MetaClass1,
MetaClass2,
MetaClass3, Bag
+REP tree, DT, OneR,
PART, Jrip, VFI

79%
(Small-
DS)

48%
(Base-
DS)

96%
(Small-
DS)

0,70
(Base-
DS)

Not
mentioned,
but
handled by
algorithms

10-fold Cross
validation

Fan et al.
[2010]

C5.0, ANN, CHAID,
CART, QUEST

71.20% – – – Removed Holdout
(80%–20%)

Belciug et al.
[2010]

Cluster network,
k-means, SOM

78% – – – Unknown 10-fold Cross
validation

Trumbelj et al.
[2010]

NB, NB+Bagging DT,
SVM, RF

70% – – – Considered
as a
separate
feature
value.

10-fold Cross
validation

Kim et al.
[2012]

SVM, ANN, Cox
model, St. Gallen,
NPI, Adjuvant!

84.58% 89% 73% 0.85 Removed Holdout
(70%–30%)

Salama et al.
[2012]

SVM-DT-MLP-KNN,
DT, MLP, SVM, NB,
KNN, SVM-NB,
SVM-MLP, SVM-DT,
SVM-KNN,
SVM-DT-NB,
SVM-DT-MLP,
SVM-DT-KNN,
SVM-DT-MLP-NB

77.30% – – – Unknown 10-fold Cross
validation

(Continued)
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Table IV. Continued

Publications Algorithms Acc Sen Spe AUC MD
Sampling
Strategy

Murti [2012] DTNB, RIPPER,
Decision Table

75.17% 37% 90% 0.676 Removed Unknown

Tomczak
[2013]

CART+LogitBoost,
ClassRBM,
ClassRBM+DropOut,
Class-
RBM+DropConnect,
Class-
RBM+DropConnect,
CART+Bagging,
CART+AdaBoost, NB,
SVM, RF, Two
oncologists

75% – – – Unknown Holdout
(70%–30%)

Pawlovsky
and
Nagahashi
[2014]

KNN 76% – – – Removed n.a.

Beheshti et al.
[2014]

CAPSO-MLP,
PSO-MLP, GSA-MLP,
ICA-MLP

80.25% 52.33% 83.38% 0.63 Mean Holdout
(80%–20%)

Chaurasia and
Pal [2014]

LR, C4.5, ANN 74.50% 31.80% 92.50% – Unknown 10-fold Cross
validation

revision, it is clear that this is still an open problem. This observation is based on five
problems detected in the reviewed works (RWs):

Lack of Data. The majority of RWs used local datasets (datasets that contain only
data from a local/regional center), which complicates the replication and further com-
parison of results by other researchers. Also, the number of patients enrolled in most of
these studies can be considered small (less than 1,000 patients), especially for a com-
mon pathology like BC. The reduced size of the datasets becomes even more critical
when most of the works do not deal with MD, either at all (more than 80%) or with
proper thoroughness. Only three research works have addressed this issue (Razavi
et al. [2005, 2007] and Beheshti et al. [2014]).

Imbalanced Binary Decision Problem. The second problem, as mentioned in the
Introduction, is that the prediction of BC recurrence is a binary classification problem
where the goal is to accurately predict whether a BC patient will or will not recur.
To achieve that, these two classes should be balanced (have similar proportions in
the dataset); otherwise, the algorithms could predict one class better than the other.
From our analysis, it can be noted that the majority of the RW presented imbalanced
datasets, which will somehow degrade the performance of ML techniques. This point
could be easily overcome by using appropriate sampling strategies to balance data,
such as Synthetic Minority Oversampling Technique (SMOTE) [Chawla et al. 2002].

Feature Selection. The third problem concerns feature selection. Only a small num-
ber of works used computational feature selection techniques. Most of the RW use a
manual feature selection process, in which medical doctors are consulted to select the
variables to use in the prediction studies. However, this process has one great dis-
advantage: the information that the algorithms are able to find is exactly what they
were expected to find: the doctors select the variables using previously established
knowledge or informed intuition, which may prevent potentially useful variables from
being used in the models, and new relationships between variables and recurrence
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to be found. Also, it is important to note that only one study tried to mix clinical
markers with genetic information [Sun et al. 2007]. Many of the variables selected
in the RWs were not mutually exclusive (e.g., BC stage is the conjunction of tumor
size, lymph nodes involved, and the presence or absence of metastasis) and some were
not routinely described as important recurrence factors (e.g., tumor location included
breast regions and laterality), which could return somewhat misleading conclusions.
Moreover, important factors that must be present in daily clinical practice are missing,
such as HER2 expression. The determination of HER2 expression is mandatory for the
definition of intrinsic subgroups that define BC behavior. Even in the most frequent
BC subgroup (that express HRs), patients with HER2 enriched tumors are associated
with a high rate of brain, liver, and lung metastasis [Beca et al. 2014]. These tumors
also display different patterns of relapse and metastatic spread depending on HR sta-
tus, with a median relapse-free survival of 19.5 months after surgery in HR negative
patients compared to 32.0 months in HR positive patients. Patients with HER2+/HR−
disease have significantly increased hazard of early (0–2 and 2–5 years), but not late
death (>5 years), when compared to HER2+/HR+ [Van den Hurk 2011].

The nonstandardization of such set also hampers direct comparisons between studies
and compromises future investigations in the field.

A consensus in the definition of important variables to study and its validation over
appropriate datasets is still a current challenge.

Interpretability. The fourth problem is interpretability, an important concept in the
health care area. If the expert/clinician cannot validate the approach, it will never
be accepted by the community as a valid one. This sometimes leads to a scenario
where researchers try to find a trade-off between interpretability and performance
for their approaches. Accordingly, it is not surprising that 13 out of the 17 RW used
ML techniques that are well known for their interpretability, like DTs. However, other
techniques that are in the opposite side (traditionally achieving higher performance,
although less interpretable) have not been neglected, such as ANNs. The comparison
between these different methods is impossible due to a number of factors: the used
datasets are different, the selected set of features and algorithms do not always match,
and finally the evaluation metrics used are not always the same. Some studies even
use clinicians to validate their approaches. However, hybrid or combination algorithms
generally seem to be among the best approaches.

Evaluation Metrics. Finally, regarding the metrics used in the evaluation phase, it
is quite surprising how eight of the 17 RWs only used accuracy to measure classifica-
tion performance, especially considering the class imbalance present in the associated
datasets. Accuracy is not the most appropriate metric for imbalanced datasets, since it
does not properly identify the true positive and true negative rates (i.e., sensitivity and
specificity). When considering other studies that present both accuracy and sensitivity
results, it can be noted that it is easier to achieve a good accuracy performance than
sensitivity results (only three of the RWs presented good sensitivity). This may also
be explained by the imbalanced distribution between “recurrence” and “no-recurrence”
cases.

5. CONCLUSIONS AND FUTURE WORK CHALLENGES
As discussed in this survey article, predicting recurrence is a key point in the BC con-
text. However, and in spite of the fact that researchers have tried to address this topic
in the past decade, it remains an open challenge. Based on the analyzed RWs, the works
using a combination of ML techniques seem to have a slight advantage over the ones
that used a single approach (e.g., the one proposed by Jerez-Aragonés et al. [2003]),
which falls in line with the literature review works [Stefanowski 2005]. Also, another
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important aspect not yet fully addressed in the RWs is related to dealing with MD. This
is a crucial problem and imputation strategies are only possible if the used dataset has
a sufficient number of patients, also benefiting from balanced datasets. To achieve that,
the clinicians community must establish a standard characterization for such patients
(that will be used as predictors) which will lead to the creation of datasets with large
patients records.

Finally, the development of new ML algorithms or the exploration of ML algorithms
that have never been used in this context may also constitute a valid future perspective.
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