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Abstract—The goal of this work is to develop a computa-

tional model of the human retina and simulate light scattering

through its structure aiming to shed light on data obtained

by optical coherence tomography in human retinas. Currently,

light propagation in scattering media is often described by

Mie’s solution to Maxwell’s equations, which only describes the

scattering patterns for homogeneous spheres, thus limiting its

application for scatterers of more complex shapes. In this work,

we propose a discontinuous Galerkin method combined with a

low-storage Runge-Kutta method as an accurate and efficient way

to numerically solve the time-dependent Maxwell’s equations.

In this work, we report on the validation of the proposed

methodology by comparison with Mie’s solution, a mandatory

step before further elaborating the numerical scheme towards

the propagation of electromagnetic waves through the human

retina.

Index Terms—Maxwell’s equations, Retinal scattering mod-

elling, Optical coherence tomography

I. INTRODUCTION

The human retina is a multilayered structure in the eye,
responsible for the transformation of light energy into neural
signals, interpreted by the brain. It is traditionally considered
to be composed by ten layers, among which the outer nuclear
layer that comprises the cells bodies of light sensitive photore-
ceptor cells (rods and cones) [1]. Several retinal pathologies,
such as diabetic retinopathy, or macular edema, can be de-
tected in their early stages, before noticeable morphologic al-
terations on the retina [2], by analyzing data acquired through
optical coherence tomography (OCT), an imaging technique
that uses near infrared light to produce high-resolution images
of the retinal tissue [3]. This approach for early diagnosis
of retinal conditions is based on functional changes that
modify the optical scattering properties of retina, prior to
any structural alterations. As OCT standard techniques only
provide structural information [4], it is necessary to expand
OCT data analysis to account for both structural and functional
information. This could be achieved by inverse modeling of

OCT data, using the physical and optical properties of healthy
and diseased human retinas and by developing a mathematical
model of the respective OCT data [5]. A proper OCT reference
for a certain pathology would further enable the identification
of the cellular alterations responsible for the observed OCT
scans from patients, contributing to an earlier diagnosis and,
hopefully, a more efficient treatment.

This research project aims to understand the changes at the
cellular level that lead to differences in OCT data, through
the solution of the inverse scattering problem, reconstructing
the retinal tissues optical properties based on their scattering
patterns. For that purpose, the direct scattering problem needs
to be assessed, which comprises two main steps (1) the study
of the electromagnetic wave propagation and scattering as
it travels through the sample and (2) the measurement off
scattered light at the detectors [5]. This behaviour of light
scattering through the sample can be described by a variety of
methods, such as the radiative transfer theory, Lambert’s Beer
Law, Maxwell’s equations and also some statistical approaches
using Monte Carlo [5].

Regarding the interaction of electromagnetic field with
biological fields, several approaches have been proposed over
the past decades, mostly based on single-scattering theory, [7],
which cannot fully model the complex structure of the retina.
Accounting for such complexity, in particular the variation of
the size, shape, refractive indexes and distance between each
one of retina’s layers, requires a more accurate approach that
can be achieved by solving Maxwell’s equations [8]. The Mie
solution to Maxwell’s equations is one of the most popular
methods to model tissue scattering at the cellular level [9].
However, Mie’s solution only describes the scattering patterns
for a single homogeneous sphere, which limits its application
to scatterers of different shapes and aggregates of scatterers.
The Generalized Multiparticle Mie (GMM) introduced by
Xu is an extension of Mie’s solution to multiple scattering
(aggregates of spheres) [10], that models more accurately light
scattering from biological tissues, as assessed by Wang et
al. [11]. Nevertheless, GMM is also restricted to spherical
structures. To describe the scattering phenomena though scat-
terers of arbitrary shapes, more complex models need to be
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studied. The finite-difference time-domain (FDTD) method,
first introduced by Yee, is a solution of Maxwell’s equations
in the time domain, that has been applied to a wide range
of electromagnetic problems [12]. In brief, FDTD algorithm
starts with Maxwell’s curl equations and solves both electric
and magnetic fields in time and space rather then describing
each one in particular, through a wave equation. Dunn et al.
pioneered the application of FDTD method to light scattering
from cells [13]. This application was further extended by
Tanev et al. [14] and Su et al. [15] to study the influence of
different organelles inside the cells. FDTD can model complex
structures, namely inhomogeneous objects of arbitrary shapes.
However, FTDT method comprise some limitations as well, in
particular the computational cost. Due to this, novel techniques
have been developed towards Finite Element Methods (FEM)
[16]. FEM surpass FDTD methods in terms of geometric
flexibility and ability to work with higher orders of accuracy
and efficiency in computations.

Our approach encompasses five main steps: (1) development
of a Discontinuous Galerkin Finite Element Method (DG-
FEM) 3D model of Maxwell’s equations, (2) validation of
the proposed methodology with Mie’s solution for a single
spherical scatterer, (3) extension of the method to arbitrary
shapes, (4) Monte Carlo simulations of light propagation in
the retina, and (5) assessment of the final model’s validity for
diagnostic and therapeutic purposes. To the best of authors?
knowledge, this methodology has never been proposed and
applied for a complete inverse modeling of OCT data, thus
contributing for an important insight on the understanding of
retinal changes at a cellular level.

The present manuscript reports on steps (1) and (2), focus-
ing on the implementation and analysis of DG-FEM Maxwell
3D model by comparison with Mie’s theory. The remainder
of this paper is organized as follows: Section II outlines the
methodological steps used in this work. Section III reports the
obtained results and Section IV presents the conclusions and
topics of future work.

II. DG-FEM MAXWELL 3D

In this section, a brief description of DG-FEM Maxwell
3D is presented. We omit a more comprehensive description
since it follows the main ideas presented in [8] for the 2D case.
Afterwards, the scattering amplitude pattern F , that allows the
computation of macroscopic parameters, anisotropy (g) and
scattering cross-section (�s), comparable to Mie’s solution, is
achieved.

A. Discontinuous Galerkin method

The DG formulation used in this work follows the nodal
formulation described [18] and its specifications were previ-
ously discussed, for the 2D case, in [8]. Now we consider the
3D case and restrict our attention to computational domains
(meshes) tessellated by tetrahedrons. A sample mesh used in
the work in shown in Fig. 1.

Fig. 1. One sample of a surface mesh for a sphere with a cubic domain.

B. Low-storage Runge-Kutta
For the time integration we used the improved fourth-

order, 14-stage low-storage Runge-Kutta (LSRK) presented
in [19] instead of the fourth-order, five-stage LSRK method
considered in [18] . This modification has proven to reduce
the computational time in 40%, without further increasing the
computational cost, as corroborated in [8].

C. Domain constraints and specifications
In electromagnetic simulation, and even more for the suc-

cessful application of the DG method, it is important to
account for boundary conditions, frequently known as ab-
sorbing boundary conditions. The purpose of specifying such
constraints is to avoid undesirable reflections caused by non-
absorbing boundary conditions, that invade the simulation
domain and interfere with the observation of the phenomenon
of interest. We consider the perfectly matched layer (PML)
formulation in [20]. Furthermore, to simulating the full com-
plexity of the retina, a variable permittivity was introduced,
changing the initial formulations in [18].

D. Variable Permittivity
Since we are modelling exclusively biological domains,

which are magnetically transparent, the magnetic permeability
will be consider as a constant (µ ' 1). To introduce the
effect of spatially variable electric permittivity (✏ ! ✏(x)),
the numerical fluxes (E and H) must incorporate the local
impedance Z and conductance Y as Z± = 1

Y ± =
q

1
✏± ,

where the superscript “+” refers to the neighbouring element
and the superscript “� ” refers to the local cell.

E. Near-To-Far-Field Transformation
Providing a well-defined scattered-field region enables the

computation of the near-field scattering pattern. However, to
simulate the retina’s layers, we’re interested in the far-field
scattering phenomena. Using the near-field data, it is possible
to use a near-field to far-field transformation (NTFFT) to



obtain the far-field scattering pattern [21]. The NFTFFT is
an application of the surface equivalence principle: the values
of the near-field at a virtual surface surrounding the scatterer
can be used to compute a magnetic and electric “current”
that allows the computation of the scattered field at any point
outside the virtual surface. Accordingly, the near-field time-
domain values are converted to frequency-time values with a
discrete Fourier transform, and the equivalent phasor electric
current

�̆!
Js and equivalent magnetic current

�̆!
Ms are defined on

the surface S, as follows from [21]. The NFTFFT is succinctly
explained in [21] and we shall simply sketch the most relevant
steps for the far-field pattern calculation. Using J = r⇥H,
M = �r⇥E and  = x sin ✓ cos�+ y sin ✓ sin�+ z cos ✓,
the angular dependent components are given by:

N✓ =

ZZ

S
(Jx cos ✓ cos�+ Jy cos ✓ cos�� Jz sin ✓) e

ik ds

N� =

ZZ

S
(�Jx sin�+ Jy cos�) e

ik ds

L✓ =

ZZ

S
(Mx cos ✓ cos�+My cos ✓ cos��Mz sin ✓) e

ik ds

L� =

ZZ

S
(�Mx sin�+My cos�) e

ik ds

(1)

Since S is a surface composed of non-overlapping, con-
necting triangular elements, we can change the integrals in
(1) to integrals on the mesh elements’ domain in order to be
able to numerically evaluate them using gaussian cubature.
Here, we decompose the tetrahedral elements into triangle
elements, describing each element’s face in 2D coordinates.
Each element was rotated to make their faces parallel to
the xy axis, discarding the z component. This allows the
computation of 2D Vandermonde matrices and the creation of
an interpolation matrix between the reference element nodes
and the cubature nodes [22]. After obtaining the cubature
nodes and interpolating the field components to these nodes,
the element is re-rotated to its original position. An example
is given for N� (see equations (2) to (4)). The mesh elements
are rotated and mapped to the standard triangle defined as
I = {r = (r, s)|(r, s) � �1; r + s  0} from (2) to (3),
resulting in the transformation Jacobian Jk and integration
limit change. Then, the rotation applied to the general element
map is applied in reverse to the cubature mapping , thus
obtaining the cubature mapping in the face’s original position.
Using gaussian cubature of order Nc, (3) may be evaluated as
(4), considering that all phasors are already interpolated to the
cubature nodes, l, on the triangular element’s surface.

N� =
KX

i=1

ZZ

Sk

(�Jx sin�+ Jy cos�) e
ik(x sin ✓ cos�+y sin ✓ sin�+z cos ✓)ds (2)

=
KX

i=1

Jk

Z 1

�1

Z �t

�1
(�Jx sin�+ Jy cos�) e

ik(x(⌘) sin ✓ cos�+y(⌘) sin ✓ sin�+z(⌘) cos ✓)d⌘ (3)

=
KX

i=1

Jk

NcX

l=1

wl

�
�J l

x sin�+ J l
y cos�

�
eik(x

l sin ✓ cos�+yl sin ✓ sin�+zl cos ✓) (4)

Finally, knowing N✓, N�, L✓ and L�, the far-field scattering
pattern, Fs(✓,�) is defined by

Fs(✓,�) =
k2

32⇡2 r2Pinc

⇣
|L� +N✓|2 + |L✓ �N�|2

⌘
(5)

where r is a point in the far-field and ✓ and � are the angles
measured from the z and x axes in spherical coordinates.
Fs(✓,�) represents the scattered intensity at any point in
the far-field, and allows the computation of the macroscopic
parameters g and �s, as

g =

Z ⇡

0
p(✓) cos(✓) sin(✓)d✓ (6)

�s =

Z 2⇡

0

Z ⇡

0
Fs(✓,�) sin(✓)d✓ (7)

where p(✓) is scattering phase function, obtained according
to [13].

III. RESULTS

The validation of DG-FEM Maxwell 3D with Mie’s solu-
tion, requires a simplification of the retinal layers’ model. The
layers are assumed to be composed by spherical cells, follow-
ing the assumptions of Mie’s theory. In fact, a single spherical
cell is considered, simply modelled as a dielectric object. Two
sets of domain parameters are required: one that complies
straightforward with Mie’s solution and one that follows the
principles of DG-FEM Maxwell 3D. Table I resumes the two
sets of input parameters. For Mie’s solution, a software based
on [23]. For DG-FEM, all mesh generation is done with [24].
Before each simulation, the initial mesh is discretized as a cube
domain, ⌦, with two spherical interfaces, which correspond
to the spherical scatterer and the surrounding virtual surface
where the field’s dynamics are collected.

For unpolarized light only, the differential scattering cross
sections d�/d✓, solely depending on the scattering angle
(azimuthally averaged) were calculated. The comparison be-
tween Mie’s and DG-FEM Maxwell 3D solution was done



TABLE I
MIE’S AND DG-FEM MAXWELL 3D INPUT PARAMETERS

Input Parameters

Mie’s solution

Sphere Diameter 1
Refractive Index of the medium 1
Refractive Index of the sphere 1.5 + 0j
Wavelenght in Vaccum 1

Maxwell’s solution Medium radius 1.5
PML limits 1.6

by calculating the differential cross sections and the relative
percentual error between the g and �s results, according to
equations (8) and (9). The results are shown in Figures 2 and
3 and Table III.

�g =
| gMie � gDGFEM |

gMie
⇥ 100 (8)

��s =
| �sMie � �sDGFEM |

�sMie

⇥ 100 (9)

Fig. 2. Normalized plot of d�/d✓ for all scattering angles between 0 and
180� degrees.

TABLE II
COMPARISON OF g AND �s FOR BOTH SOLUTIONS.

g �s

Mie’s solution 0,72924 2,7367
DG-FEM simulation 0,73193 2,7349

Relative error (%) 0,36794 0,064

The obtained results are within the required precision for
biological domains. However, some aspects need further im-
provement, mostly regarding the sensibility to the incident
wave’s frequency, DG-FEM order of interpolation and mesh
discretization. Our simulations have shown that an increase
in the wave’s frequency requires an increase in the method’s

Fig. 3. Polar plot of d�/d✓ for all scattering angles between 0 and 360�
degrees.

order, which is computationally expensive. Furthermore, the
quality of the mesh also affects the precision of results and
cannot be compensated by increasing the polynomial order. In
order to improve the mesh quality and precision while main-
taining an reasonable computational time could be the further
refinement of the mesh in areas where the electromagnetic
fields are expected to be more complex. Further developments
of the DG-FEM method will account for this susceptibilities.

IV. CONCLUSIONS

In this paper, we proposed a method for solving the time-
dependent Maxwell’s equations focusing on the simulation of
light scattering trough the retina’s layers, DG-FEM Maxwell
3D. The validation of the proposed methodology was done by
comparison with Mie’s theory, considering the light scattering
for a single sphere, using the same parameters as inputs for
both models. The obtained results are in agreement with those
obtained using Mie’s theory, with small percentage differences
of 0.37% and 0.06% for the scattering anisotropy (g) and
scattering cross-section (�s), respectively. This validation was
a mandatory step prior to further elaborating the numerical
scheme towards the propagation of electromagnetic waves
through structures with more complex shapes present in the
human retina. The successful validation of our methodology
removes Mie’s dependence from the final model, enables the
extrapolation of the method to the human eye’s structures
and allows the computation of parameters required by larger
scale simulations, using Monte Carlo methods. Furthermore,
the proposed approach enables the simulation of larger do-
mains, e.g. the full retina, without the computational burden
associated with the Maxwell numerical solver.
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