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Abstract. It is recognised that the imbalanced data problem is aggra-
vated by other difficulty factors, such as class overlap. Over the years,
several research works have focused on this problematic, although pre-
senting two major hitches: the limitation of test domains and the lack of
a formulation of the overlap degree, which makes results hard to gener-
alise. This work studies the performance degradation of classifiers with
distinct learning biases in overlap and imbalanced contexts, focusing on
the characteristics of the test domains (shape, dimensionality and imbal-
ance ratio) and on to what extent our proposed overlapping measure
(degOver) is aligned with the performance results observed. Our results
show that MLP and CART classifiers are the most robust to high levels
of class overlap, even for complex domains, and that KNN and linear
SVM are the most aligned with degOver. Furthermore, we found that
the dimensionality of data also plays an important role in explaining
performance results.

Keywords: Imbalanced data · Class overlap · Machine learning
classifiers

1 Introduction

Data imbalance occurs when there is a considerable difference between the class
priors of a given problem and, for a binary classification scenario, is commonly
described by the Imbalance Ratio, IR = nmaj

nmin
, where nmaj and nmin repre-

sent the number of majority and minority examples in the domain [2]. Predic-
tion models built from imbalanced datasets are most often biased towards the
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majority concept [9], which is especially critical when there is a higher cost of
misclassifying the minority examples, such as diagnosing rare diseases, prevent-
ing fraud or detecting faulty systems [4,14]. However, data imbalance is not the
sole factor that affects the performance of classifiers. As stated in recent litera-
ture, there are several others that combined with data imbalance, create a rather
chaotic setting [12]. These are frequently referred to as data difficulty factors and
commonly include: class overlap, small data set size/lack of density, the presence
of small disjuncts and the existence of different types of minority examples (e.g.
safe, borderline, rare and outlier examples) [16].

The problem of class overlap in imbalanced domains has been previously dis-
cussed in related work, although not with the required depth. The main objective
of related work is to show that class imbalance is not the sole factor that affects
classification performance, and that overlap plays an important role as well.
However, authors often fail to provide some insights on how both problems act
together and affect well-established classifiers, and to what extent one problem
is more critical than the other for different learning biases. Furthermore, related
work is also limited in the following aspects:

• Definition of overlapping degree: Some authors define the overlapping
degree as a distance between minority and majority classes [3,10,13], which
is only appropriate for specific data structures/shapes, while others define it
as an intersection region of the majority and minority class, although without
presenting a clear formulae to the define the degree of overlapping [5–7]. Other
authors approximate the overlapping degree by considering the overlap of
individual features (e.g. Fisher Discriminant Ratio – F1 measure) [11] or by
identifying minority borderline examples [12,15], which may not completely
capture the overall overlapping of the domains.

• Tested domains: Most research works consider artificial domains where the
data structure is limited and unlikely to be found in real-world scenarios [5–7],
besides being limited to two to five dimensions [3,13]. Others consider more
complex shapes (e.g. linear versus non-linear shapes), however, limited to a
two-dimensional space [12,15].

• Nature of data and classifiers: In the majority of works, only one or
two/three classifiers are tested. The research of Garćıa et al. [5–7] is an
exception, where different inductive biases are discussed, and it is possible
to distinguish the behaviour of local versus global classifiers, although not
in depth. Furthermore, performance results are most often discussed from a
general perspective, rather than attending to the characteristics of the tested
domains.

We have replicated several imbalanced scenarios with different characteris-
tics found in related work and compare them altogether. These scenarios are
generated for different degrees of imbalance and overlap, and the performance
of standard classifiers is analysed. We also put an effort to fill in the gaps in
related work by defining and evaluating a measure of the overlapping degree
(degOver), considering artificial domains with different shapes and dimension-
ality (2–40 dimensions). Our experiments are focused on studying the behaviour
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of classifiers with distinct learning biases to determine whether some are more
affected than others. This study is furthermore taken from different perspectives:
focusing on the properties of the tested domains (shape and dimensionality), and
focusing on to what extent the proposed overlapping measure is aligned with the
performance results of the studied classifiers.

2 Related Work

The work of Prati et al. was one of the first studies on the impact of overlap in
imbalanced domains [13]. Their domains consisted of two 5-dimensional clusters
(Fig. 1a), where the distribution of minority and majority examples, as well as
the distance between cluster centroids, could be changed (1–9 standard devia-
tions). The classification results (C4.5) showed that the influence of the degree
of imbalance becomes weaker as the distance between centroids increases.

Garćıa et al. [7] performed a similar experiment with 2-dimensional domains,
where the majority and minority classes start well-separated and, for a fixed
IR, the majority class moves towards the minority class, increasing the amount
of overlap (Fig. 1b). Similarly to Prati et al. [13], authors concluded that the
increasing overlap deteriorated the performance of classifiers. In a later work
[5], authors distinguish between typical and atypical domains (Figs. 1b/d and c,
respectively).
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Fig. 1. Artificial domains generated by Prati et al. [13] (a) and Garćıa et al. [7] (b–d).

Authors found that for typical domains, classifiers with a local nature (e.g.
KNN) were more subjected to loss in performance for the majority class than
classifiers with a more global learning. Regarding atypical domains, the classifi-
cation results suggested that the recognition rate of the minority class improved
as the minority class became denser. Denil and Trappenberg [3] also studied
the joint-effect of class imbalance and overlap: they generated two-dimensional
domains where both the class overlap and class imbalance could be changed.
Their analysis was focused on the performance of SVM, showing that as the
training size increases, the influence of class imbalance is negligible and that
overlap is the main responsible for performance degradation.

The research of Luengo et al. [11] was not focused on the effects of class
imbalance and overlap, although authors found that one measure of overlap
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between classes (F1 measure) proved to be informative of good/bad behaviour
of classifiers.

Finally, we refer to the line of research of Napierala and Stefanowski [12,15],
where class overlap is defined via the percentage of borderline minority examples.
Napierala and Stefanowski studied the influence of disturbing minority class bor-
ders in three different 2-dimensional domains with different characteristics, paw,
clover and subclus, (Fig. 2) and concluded that increasingly adding borderline
examples degraded the classification performance [12].
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Fig. 2. Artificial domains generated according to Napierala and Stefanowski [12,15].

As stated in the Introduction, a common limitation of related work is in
the way class overlap is measured. In the research work of Prati et al. [13],
increasing the distance between cluster centroids guarantees that the overlap is
being reduced, although it is not possible to quantify the exact degree of overlap
in each configuration. In Garćıa et al. [5–7], authors generate an artificial domain
represented by a square of length 100 where both classes are defined uniformly
in a rectangle of 50 × 100 (typical domain). The IR was fixed to 4:1, while
the overlapping degree was controlled through the distance between the square
centres. Initially, the majority and minority squares start well separated by a line
orthogonal to X1 axis, and increasing amounts of class overlap are produced by
moving the majority square towards the minority square in a stepwise manner:
[0..50], [10..60], [20..70], [30..80], [40..90] and [50..100] for 0, 20, 40, 60, 80 and
100% overlap. Let us consider the example given in Fig. 1b, for a typical domain
with IR 4:1 and 40% overlap. Since no formulae is presented in the original
papers [5–7], we may assume that the calculation of the overlap degree was
performed as a fraction of the area that is overlapped (Ainter) over the total
minority area (Amin) (or majority area, since they are equal). In that way we
would obtain overlap = Ainter

Amin
= 2000

5000 = 40%. If the IR was defined arbitrarily,
then Fig. 1d, with an IR of 8:1, would also illustrate a scenario with 40% class
overlap. However, if we consider the definition of class overlap as regions in the
data space with similar priors [10], this does not seem correct, since the number
of points that occupies the same region is lower in Fig. 1d. Basing our reasoning
on the similarity of class priors, a 8:1 configuration should produce a lower degree
of overlap.

For atypical situations, the majority examples are always uniformly dis-
tributed in a square of length 100, while the minority examples are condensed in
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ranges [75..100], [80..100], [85..100], [90..100] and [95..100]. If the same rationale
as above is applied to atypical domains (Fig. 1c), the percentage of overlap would
be 100%, since the minority area is completely embedded in the majority area.
In their paper [5], authors do not elaborate on the percentage of overlap present
in each configuration – no percentages or any other values are presented for the
overlapping amount. Instead, these domains are evaluated in terms of global
imbalance, local imbalance and the size of the overlapping region: the notion of
overlap gets somewhat lost, which complicated the discussion of results. Accord-
ing to the definition of class overlap as “regions in the data space with similar
priors” [3,10], we believe that the “local imbalance in the overlap region” implies
the existence of an overlap degree. For instance, since the distribution of exam-
ples is uniform, a [75..100] range of minority examples over the majority class
square means that both classes have the same number of patterns (100 points of
each class) in the overlap region, thus, there is no local imbalance in the overlap
region. In this situation, the priors of both classes are the same, and therefore the
overlap degree should be maximum. As the minority class becomes denser, the
local imbalance increases because the size of the overlapping region is decreased,
meaning that the class priors are uneven, and therefore the overlap, in fact,
is decreasing. From this perspective, we could evaluate the results as follows:
as the minority class becomes denser, the overlapping degree is decreasing and
therefore the classification performance improves.

Regarding the F1 measure used in the research of Luengo et al. [11], it mea-
sures the highest discriminative power in all the features in the data. Essentially,
F1 is measured for all the features in the dataset according to F1 = (µ1−µ2)

2

σ2
1+σ2

2
,

and the highest value among all features is returned. Therefore, F1 measures the
overlapping of individual features, not the “overall overlapping of data”. If two
domains have the same structure (features have the same range and spread), F1
assumes the same or similar value, although they might be different in classifi-
cation terms.

Finally, regarding the typology defined by Napierala and Stefanowski [12], as
only the minority class is considered, borderline examples from the majority class
(that contribute to class overlapping) are not identified. Also, as the percentage
is determined over the total minority examples, majority regions where there are
no examples from the minority class are not taken into account.

An overlapping degree should attend to regions with the same class priors
(rather than considering distances between classes or the size of overlapping
areas only), consider the overall overlap (rather than the overlap of individual
features or focusing solely on the minority class examples) and focus on the
characteristics of data space: structure and class decomposition, distribution of
examples (implying that class imbalance could affect class overlap) and data
dimensionality. In a recent work, Lee and Kim propose a hybrid classifier based
on a fuzzy support vector machine and k-nearest neighbour algorithm to address
class imbalance and overlapping simultaneously [8]: the data space is divided into
soft and hard overlap regions so that each is handled separately. Although the
focus of the work is not to analyse the joint-impact of these problems, authors
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define overlap-sensitive costs, where each example is classified as being part of
an overlapping or a non-overlapping region, through a k neighbourhood-based
function. This approach is advantageous since it considers the factors mentioned
above and therefore we have decided to adapt it in order to formulate a degree
of overlap and analyse its behaviour when applied to several data characteristics
and imbalance ratios.

3 Experiments

All datasets contained 1500 examples and were generated with increasing levels
of imbalance, namely 1:1, 2:1, 4:1, 6:1, 8:1 and 10:1, and increasing number
of dimensions, namely 2, 3, 5, 10, 15, 20, 30 and 40D. The datasets further
considered several overlap degrees and data structures (shapes), resulting in
different levels of complexity for classifiers: clusters and garcia (less complex
shapes) and clover, paw and subclus (more complex shapes).

The clusters domains, clusters-vo (Fig. 1a) and clusters-va, consist of two
normal distributions (one for each class) where each cluster has unitary stan-
dard deviation. For clusters-vo only one of the attributes is changed and the
overlap region decreases as the separation in the X1 axis between cluster cen-
tres increases. For clusters-va, all the attributes are changed and the separation is
increased in all axis, according to the number of dimensions. The garcia domains,
garcia-va and garcia-vo (Fig. 1b), follow a rectangular shape where both class are
centred in the same point, being overlapped. The distance between the centres
is then increased in steps of 10 units until 3×radius for garcia-va or 4×radius
for garcia-vo is reached, guaranteeing no overlap. The paw, clover and subclus
scenarios (Figs. 2a, b and c, respectively) are composed by different shapes of
the minority class, and the remaining space is filled by the majority class. The
minority class is formed by two types of examples – safe (located in homoge-
neous regions of the class) and borderline (located in the boundary between both
classes). For each imbalance ratio and dimension, the ratio of safe/borderline
examples varies from 100/0 to 0/100.

We measured the degree of overlap using a neighbourhood function. For
each example xi in data (considering both classes), its 5-nearest neighbours
are found: if xi and all its 5-nearest neighbours are from the same class, then
example xi belong to a non-overlapping region; otherwise, it belongs to an over-
lapping region. The number of examples (considering both classes) that belong
to overlapping regions (nmin over and nmaj over) are then divided by the total
number of examples, n. Thus, degOver = (nmin over + nmaj over)/n measures
the percentage of examples comprised in overlapping regions. Measuring the
degree of overlap as a neighbourhood-based function has two main advantages:
it can be applied to d-dimensional data with different structures/shapes and
takes the imbalance ratio (IR) into account. Besides considering the IR as a
fraction of nmaj/nmin, we have normalised this ratio to measure the severity of
the imbalance ratio. The degree of imbalance is defined as degIR = 1 − nmin

n/2 .
The value of nmin is naturally affected by the IR, and for a particular IR
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(e.g. IR = 4) and total number of examples (e.g. n = 500), is computed as
nmin = n/(IR+1), (for IR = 4:1, nmin = 500/(4 + 1) = 100 minority examples
and degIR = 1 − 100/(500/2) = 0.6). This degree of imbalance reflects how
much a particular scenario is affected by class imbalance on a normalised scale
between 0 and 1. We analysed seven classifiers with distinct inductive biases
[1]: Classification and Regression Trees (CART), k-Nearest Neighbour (KNN),
Fisher Linear Discriminant (FLD), Naive Bayes Classifier (NB), Multilayer Per-
ceptron (MLP), Support Vector Machine with a linear kernel (SVM-linear) and
Support Vector Machine with radial basis kernel (SVM-rbf). Regarding the eval-
uation of the classification performance, similarly to previous work [5,16], we use
Sensitivity (SENS) and Specificity (SPEC).

4 Results and Discussion

We start by analysing the performance degradation of each classifier according
to the properties of the test domains (IR, structure/shape and dimensionality).
To analyse this degradation, we first tuned the parameters of all classifiers (k for
KNN, C for SVM-linear, C and γ for SVM-rbf and number of neurons and layers
for MLP) on the configuration with the least amount of overlap, for each domain,
IR and dimensionality. Then, we analysed how much the defined model is affected
by increasing levels of overlap. The Sensitivity results for the minority class are
presented in Table 1, as well as the degOver for all the presented domains (due
to space restrictions, we report only the Sensitivity, although the Specificity was
analysed as well). Overall, CART, MLP and KNN show the lowest degradation
in classification performance (considering both Sensitivity and Specificity) for
all the test domains, whereas FLD and SVM-linear suffer the most with the
increase of class overlap. These latter two classifiers also seem to be critically
affected by the IR and data structure: the Sensitivity of FLD becomes 0 for 4:1
ratios and higher (clover and subclus domains), while SVM-linear struggles with
both higher IR and higher dimensions (for clover and subclus) with Sensitivity
results of 0 for ratios higher than 4:1 in higher dimensions (15 and 40D). Thus,
linear classifiers seem to be affected by all four components of the problem (IR,
dimensionality, class overlap and data structure), where the data structure seems
to be the most prominent factor.

CART, MLP and KNN, although with different classification paradigms, are
able to “adapt” to the data structure more easily, handling data that is not
linearly separable: CART by recursively partitioning the input space, MLP by
using multiple layers with non-linear activation functions and KNN through its
neighbourhood function. These three classifiers have only achieved a poor per-
formance for clusters-va and garcia-va, when both clusters/squares are centred
at the same coordinates, respectively. These poor results are consistent with
higher values of degOver (between 0.4 and 0.97), although degOver is not capa-
ble of explaining this effect entirely: in clover and subclus domains, there are
some scenarios achieving the same overlapping values, where KNN, MLP and
CART perform well. This may be mostly due to the structure of the domain
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and the way overlap is generated. In clover and subclus, the structure of data is
not changed (when the overlap increases, more borderline examples are added,
but the core structure of the domain remains the same – Fig. 2). In clusters-
va and garcia-va, the structure of data changes with the increase of overlap,
since the cluster/square centres become closer (Figs. 1a and b). For these par-
ticular scenarios (clusters-va and garcia-va) it is also noticeable that higher IR
ratios deteriorate the classification performance (for all dimensions), which is
not observed for the remaining domains. Therefore, it is not possible to infer
clearly what is more severe for these classifiers, since they seem to be affected
by a combination of data structure, IR and class overlap, though not as severely
by data dimensionality. Finally, although SVM-rbf seems to be more affected by
class overlap than class imbalance, where the decrease in Sensitivity results was
especially noticed in lower dimensions (2D) for most scenarios. Kernel meth-
ods are known to ease non-linear problems by mapping the input data to an
“improved” feature space, but this largely depends on data itself. Furthermore,
we also observed that this classifier has obtained poor Specificity results: it was
not possible to define a clear decision hyperplane without compromising the
classification of the majority class. On the contrary, NB suffered the most from
higher IR, which is consistent with its bias to favour the most prevalent class,
adjusting its decision threshold accordingly.
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Fig. 3. Alignment between degOver and classification performance of KNN.

We now perform an analysis on the alignment of degOver and classification
performance. As previously discussed, degOver may not be able to fully charac-
terise the behaviour of all classifiers, although it may provide interesting insights
in some cases. Of note is the ability of degOver to “adapt” to different IR levels:
class overlap is not measured independently of class imbalance, and degOver
generally assumes lower values as the IR increases, as discussed in Sect. 2. An
exception occurs for the subclus domain for higher dimensions (15 and 40D),
which shows that both the shape of domain and dimensionality may impact
the results in certain scenarios. We then transformed degOver and classification
performance to categories to ease the interpretation of results: degOver values
were divided in five intervals from 0 to 1: very low overlap (VLO), low overlap
(LO), average overlap (AO), high overlap (HO) and very high overlap (VHO),
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Fig. 4. (a) Alignment between degOver and classification performance of FLD (clusters
and garcia); (b) Lines representing different levels of degIR.

while Sensitivity and Specificity results were combined to produce also five cat-
egories of performance: very bad, bad, good, great and excellent. Figure 3 shows
the relationship between degOver and KNN, which was found to be the classifier
most aligned with degOver (as expected, since their underlying principles are the
same – they are based on neighbourhood functions). Overall, the performance of
classifiers deteriorates with higher values of degOver, although this decrease is
not linear: maximum levels of overlap do not necessarily correspond to minimum
performance results. This suggests, as previously discussed, that there are other
factors (namely, data structure) affecting the performance of classifiers, as will
be discussed in what follows.

For clusters and garcia, classification performance and degOver are aligned
for all classifiers: an example of this alignment is presented in Fig. 4a for FLD.
The slight increase in performance for higher degOver values (HO and VHO)
may be explained by the IR values (Fig. 4b): the blue line (normalised IR of
0) indicates that there is no class imbalance – in this scenario, although the
overlap is high, the performance results are also high, causing the slight increase
of performance for the high overlap levels in Fig. 4a. Again, these results suggest
that all these properties of data (IR, class overlap and data structure) should
be analysed together to better understand the performance of classifiers. For
more complex scenarios, as clover, subclus and paw, the alignment with degOver
varies for different classifiers. None of them presents the expected behaviour
(a performance decrease for higher values of degOver) for all three domains,
although KNN and SVM-linear present a better alignment than the remaining
classifiers, being KNN clearly the most aligned (Fig. 5a). Figure 5a also presents
the results for FLD and SVM-rbf, two of the classifiers that do not present a
good alignment between degOver and classification performance for complex
domains. We hypothesise that this mismatch can be related to the structure of
data, which may be influenced by data dimensionality. Some classifiers (SVM-
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Fig. 5. (a) Alignment between degOver and classification performance of KNN, FLD
and SVM-rbf considering only more complex shapes (paw, clover and subclus); (b)
Dimensionality discrimination for SVM-rbf.

rbf, CART, NB and MLP) are able to classify datasets with higher overlap levels
in higher dimensions (Fig. 5b): the subclus domain is such an example (Table 1)
where high degOver values occur in 40D, and the mentioned classifiers obtain
better results than for lower dimensions (sometimes with lower degOver values
as well). These results suggest that data dimensionality is especially relevant for
more complex domains and that degOver may have to be adjusted according to
the number of dimensions and number of examples in data in order to give more
insights on properties of the domain.

5 Conclusions

Class overlap is one of the difficulty factors that deteriorates the performance
of classifiers and is even more critical in imbalanced contexts, as discussed in
related work. However, most authors study class overlap without providing a
clear formula to measure its degree: overlap is often perceived as a distance
between majority and minority concepts or as an area of intersection between
majority and minority classes, without considering the IR nor the structure of
data, which may limit the conclusions derived from such setups. From our per-
spective, a measure of the degree of overlap should take the IR and structure of
data into account. Therefore, we evaluate the usefulness of degOver to quantify
the overlapping degree and its relationship with the classification performance
of standard classifiers in several domains with different shapes, IRs and dimen-
sionality. Our results revealed that MLP and CART are less prone to suffer from
high levels of overlap and show good performance even in the presence of more
complex domains. Furthermore, in simpler scenarios, degOver is aligned with
classification performance for all classifiers, even for varying amounts of imbal-
ance. However, this alignment varies significantly in more complex domains and
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seems to be influenced by data dimensionality. In sum, although degOver takes
the imbalance ratio into account and can be measured for any data structure
and dimensionality, it needs to be adjusted to better represent these properties
of data so that it may provide more useful insights for more complex domains.
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