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Abstract 
 

Kernel Machines, and Support Vector Machines in particular, are state-of-the-art performers in 

the current machine learning paradigm. However, traditional implementations work in a batch fashion, 

limiting its application. Recent developments conducted to incremental algorithms that further decompose 

the learning process, which enable the application to large scale datasets, a common feature in biological 

data analysis. This work presents a set of experiments in order to evaluate the performance of incremental 

algorithms using five biological benchmark datasets, opening the possibility to further extend these 

incremental approaches to large scale problems. 

 

 

 

1. Introduction 

 

One of the greatest scientific challenges since the last decade has been to understand how 

biological systems work and how to control them. Problems from biology are typically complex and 

difficult to solve, because they involve numerous subtle or even unknown conditionings that form a 

particular synergy when combined. To get answers it has been collected enormous quantities of examples 

that traditional laboratorial analysis techniques haven’t been able to keep up. The use of computational 

approaches has been given a decisive help to analyze and interpret this data, expanding a new knowledge 

field referred as computational biology [1, 2, 3]. The Support Vector Machine (SVM) is one of such 

approaches, with origin from the machine learning techniques [4]. This particular kernel machine 

formulation has the ability to build discriminative models that combine high accuracy with good 

generalization, qualities that make the SVM an unavoidable tool with state-of-the-art results when dealing 

with the biological information, often characterized by high noise rates, abundant outliers and overlapped 

classes. However, large datasets and algorithms complexity are exceeding the computational capacities 

available, becoming limiting factors to real-life implementations. To overcome these problems several 

improvements have been made at the machine architecture level, appearing diverse changed SVM 

versions and new kernel machines. In practice, this took to further refined and sophisticated 

decomposition algorithms from which evolved the incremental SVMs. 

To clearly present the most important mathematic concepts, the classic SVM formulation is 

initially introduced in the next section. In Section 3 are presented attempts to increase the performance in 

kernel machines and introduced the incremental algorithms. Section 4 exposes the exact incremental 

SVM formulation, and in Section 6 appears LASVM as a different incremental approach connected to 

SMO, whose fundaments are in Section 5. The comparative study includes experiments in Section 7 and 

the respective results in section 8. Finally, conclusions and future work are discussed in Section 9.  
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2. Support Vector Machines 
 

The SVM is a successful class of learning systems strictly connected with statistical learning 

theory [4]. It tries to find a function f that minimizes the expected risk: 
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, where the distribution of the examples )(xP  and their classifications )|( xyP are unknown, and where L 

is a loss function that measures the error of predicting y with )(xf . 

Based on this principle the SVM builds a classifier, that generally can be described by 

 

bxwxf += )(.)( φ (2) 

 

, for a training data set ( ) { } { }{ }Niyx n
ii ,...,11,1, ∈∀−×ℜ∈ . 

A transformation is performed in order to change a non-linear input problem representation to a 

linear one in a given feature space φ . Mapping is implicit in a kernel function ),( ji xxK  given by the dot 

product 
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Considering the distance of a point to the decision hyperplane, it is possible to define a margin 

width
2

2

w
, from which the optimisation process is traditionally defined by 
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, with typical order values p = {1, 2}, and subject to 
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, where 0>C  is the trade-off parameter and ξ  a parameter that minimized the upper bound of the 

empirical risk. The latter also gives more flexibility to a model by adding tolerance to outliers and noise 

in the training data set. 

 The mapping function isn’t known in the optimisation process, so it can’t be made directly for 

variables w and b. In the traditional SVM the Lagrangian plays an important role in this phase. This 

problem can then be expressed as a quadratic program (QP) in the dual form 
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, where  α  are Lagrange coefficients and )()( jijiij xxyyQ φφ= , with },...,1{ Ni ∈∀  and  }{Nj ∈∀ .  

 The group of points that achieve a coefficient  0≠α  are called support vectors. 

 

 

3. Attempts to increase performance in kernel machines 

 

Among the adapted SVMs, we can find the Proximal SVM [5]. This kernel machine 

methodology can be interpreted as ridge regression applied to classification problems. It works by 

searching the “proximal” planes, around which the points of each class are clustered and then pushes 



 3

them as far apart as possible to find a good decision frontier. In the Proximal SVM the inequality 

constraints used in a standard SVM are replaced by equalities, so the solution can be obtained from a 

single linear system of linear equations, instead from solving the well known QP. Other algorithms such 

as the DirectSVM, also avoids the QP by searching the solution through an iterative algorithm based on 

few simple heuristics [6]. Because the QP is demanding on processing, calculations can greatly speed up 

for both cases. Interior-point methods [7] to solve QP problems with a small number of linear constraints, 

a reformulation of the standard QP incorporated in the Lagrangian SVM [8], the Cutting-Plane algorithm 

[9], and a proposal for non-linear training on SVM by directly minimizing the primal problem instead of 

maximizing the dual problem [10], make all part of the extended list of attempts to manage the 

complexity of the training algorithm. 

There are other approaches more radical in the way they seek to decrease the model complexity. 

For example, in the Relevance Vector Machine (RVM), Bayes principles are used to get models with a 

decreased number of vectors, by choosing prototypes that use the statistical vectors information to define 

the decision surface [11]. This approach has also another advantage: it isn’t susceptible to kernel 

restrictions imposed by Mercer’s conditions. However its author mentions that it is slower than SVMs 

when data sets are large. 

Despite the advances attained, none of the previously referred approaches shows a general 

satisfactory performance when dealing with large data sets, especially because loading numerous 

examples at a time demands a memory usage many times unavailable.  

Since less information is associated to simpler models and lower memory requirements, data size 

and dimension reduction have also been explored. Training over some randomly chosen examples is the 

easiest way to decrease the set size, but the probability of excluding important information using this 

method is very high. On the other hand, a larger training set represents an advantage in the sense that the 

extra information obtained with more examples can contribute to create more accurate models. Therefore, 

it is important to analyse every individual example. In the Reduced SVM [12], it is tried to respect this 

criteria by using the entire dataset as a constraint in an optimisation problem, but a small rectangular 

kernel matrix of user pre-specified size m, randomly selected from the entire data set, to replace the fully 

dense square kernel matrix used in the non-linear support vector machine formulation. Boosting [13], 

squashing [14], editing [15] and clustering [16], are examples of other used techniques for size reduction. 

Another way found to decrease the number of examples while searching for a solution, consists 

on analysing smaller blocks at each time and only then building a general solution. Chunking [17] and the 

Sequential Minimal Optimisation (SMO) algorithm [18] can be included in this group. While chunking 

only solves the QP with all points with non-zero Lagrangian multipliers, SMO avoids handling matrixes 

by taking the QP to the extreme of solving smaller ones of just two variables at a time. This way SMO 

doesn’t need to use a QP optimiser and storing kernel matrices in memory. Despite needing more 

iterations to converge, it can speed-up several orders of magnitude due to a radical simplification of the 

operations executed on each iteration [18]. 

The need for speed, computational capacity and online algorithms leads us to incremental 

algorithms. As the word “incremental” says, the main idea is to add/increment new available information 

to a model, refreshing it. In the genesis of incremental Kernel Machines there is a method that consists in 

retraining a model consecutively in new blocks of data and the support vectors obtained from previous 

trains [33]. This approach takes under consideration that the decision surface is described by a small 

number of support vectors, from the examples, that are preserved along several retrains. 

The exact formulation for incremental learning only appeared several years later [19], and made 

also possible to decrement or “unlearn” a model. The same formulation was used to minimize the 

computational cost of recalculating a new QP when C and kernel parameters of a SVM are changed [20]. 

However, its implementation presents a drawback once it uses all the already seen examples to get the 

final exact solution. An alternative that tries to introduce improvements in this issue is SimpleSVM [21]. 

This algorithm extends the principles in [19] to the soft-margin case and combines it with block training 

and active set methods to keep optimality over unconstrained Lagrangian multipliers. According to the 

authors, despite being reported as a good performer, in cases with many support vectors, SMO is 

preferred [19]. It is precisely from SMO that LASVM is derived. This algorithm is an online kernel 

classifier based on the soft-margin SVM able to incrementally build a discriminative model, either adding 

or removing support vectors iteratively [22]. 

In fact, real-life problems are dynamic/online rather than static/batch, since information is prone 

to change. Some work has been developed on incremental/online classification [23, 24, 25] and regression 

problems [26, 27, 28], but plenty of topics still untouched. To our knowledge no studies have been 

published about incremental multi-class machines for classification. 

On what concerns solving issues connected to a large number of variables, there isn’t much work 

done. For the Proximal SVM [29] the problem was handled without feature selection, manipulating the 
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Sherman-Morrison-Woodbury formula used for matrix inversion during optimisation. Authors report that 

this column-incremental linear proximal SVM can deal at least 10
9
 attributes. Nevertheless, there isn’t 

any kernel machine capable to apply an incremental algorithm for column and line at the same time. 

To solve both the quantity and dimension problems, some authors propose to add a combination 

of traditional techniques like Principal Component Analysis, and Recursive Feature Elimination, to 

regular training algorithms [30]. The former is intended to execute space reduction and the latter 

redundant and non-discriminative feature elimination. 

 

 

4. The exact incremental SVM 
 

The main idea under the precise incremental algorithm is the construction of a model in an 

iterative fashion, analysing point by point in such a way that the Karush-Kuhn-Tucker (KKT) conditions 

for the points already processed still being respected: 
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These conditions divide the training data in three groups: the set S of support vectors (gi = 0), the 

set E of error support vectors that go beyond the margin (gi < 0), and the remaining set Re of vectors 

within the margin (gi > 0). New training data points that don’t contribute to the solution are assigned to 

Re, while other examples are distributed among S or E. 

 The training examples change the coefficients in order to keep the KKT conditions satisfied. 

This results in a variation of the KKT conditions given by 
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, with cα  the coefficient to be incremented. Margin points S = {s1, … , slS} are the only ones that 

contribute to the new solution. Considering that gi = 0, it is possible to combine equations (10) and (11) 

in the matrix form 
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   We are interested in knowing the variations of α and b, becoming 
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, substituting 
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and considering the coefficient sensitivities β, comes 
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The application of this last equation to equation (10), gives the margin variation 
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, where margin sensitivities γi = 0 for all i elements in S. 

 Through β is possible to calculate ∆α and ∆b, and γ allows to determinate ∆g. 

 

 4.1. Accounting 

 
Changes in ∆α and ∆b can modify the constitution of S, E and/or Re sets, so the previous 

mathematical relations are valid only in the case where ∆αc is small enough not to provoke such 

phenomenon. It is then necessary to calculate the maximum increment ∆αc possible to transfer some 

points from Re to S.   

The maximum increment of ∆αc allowed, depends on: 

 

1. 0≤cg , with equality when c joins S; 

2.   Cc ≤α , with equality when c joins E; 

3. Cj ≤≤ α0 , with equality 0 when j transfers from S to Re, and equality C when j transfers 

from S to E; 

4. 0≤ig , with equality when i transfers from E to S; 

5.  0≥ig , with equality when i transfers from Re to S.  

 

If c is a new support vector, it can be added expanding the R matrix as 
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This procedure is reversible leading to a decremental algorithm, to which corresponds the matrix 

contraction 
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5. Sequential Minimal Optimization (SMO) 
 

 There are two methods typically used to solve the QP: the Conjugate Gradient [17] and 

Sequential Minimal Optimization [18]. 

 Both algorithms start from a vector α  and extends the optimization process through a 

determined direction u, that guides to a vector u*λα + , where 

 

)(maxarg* uW λαλ +=  with ),(0 uαφλ ≤≤ . (19) 

 

 The upper bound ),( uαφ  ensures that uλα +  is feasible as well: 
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 The optimal value comes from 
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where ),(, jiji xxKK =  and ),...,( 1 nggg =  is the gradient of )(αW , and 
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This direction search is dramatically speeded up when most coefficients are 0. SMO takes only 

one +1 and one –1 example as it tries to find 0=Σ kku . 

 Implementations take into consideration a small positive toleranceτ , that helps to select the 

direction search u. The directions selected have 0),( >uαφ  and τ>gu' , which allows to increase )(αW  

before reaching a constraint. These directions are defined by a pair of points called τ-violating pair, for 

which 
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 The τ-violating pair usually chosen is the one that maximizes the directional gradient gu' . When 

no more pairs remain the process finishes and it is obtained an approximated solution. This solution that 

is associated with a finite number of iterations gets near to the exact solution as τ becomes close to 0. 

 

 

6. LASVM: an online SMO based SVM 
 

LASVM is an incremental kernel classifier based on the soft-margin SVM [22]. This algorithm 

builds a discriminative model adding or removing support vectors iteratively through a method strictly 

connected with SMO. Each turn two candidate points are analysed. New support vectors come from a 

direction search called PROCESS that involves at least one non support vector from the current kernel 

expansion, while a method called REPROCESS eliminates meaningless support vectors by changing to 0 

the coefficients of one or both the analysed points. Each iteration demands storing a set of all the potential 

support vectors, coefficients αi of the kernel expansion and the partial derivatives gi in order to 

incrementally build the final discriminative model. Like it is done in SMO, the algorithm stops when  a τ-

approximated solution is reached. Despite the precise solution being attainable only after running the 

algorithm for several epochs, LASVM can reach similar accuracy values to exact methods after a single 
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pass over the data. Nevertheless a finishing step similar to a simplified SMO, may be necessary to 

improve performance on noisy data sets when shortening the number of epochs. 

A significant difference that arises when comparing LASVM to SimpleSVM is that the former 

doesn’t seek the precise solution of the QP problem in each step but instead an approximation that 

improves the dual function W(α). This has an impact in the processing time: while SimpleSVM uses rank 

1 matrix updates whose computation cost grows as the square of the number of support vectors, LASVM 

SMO based updates grow linearly with the number of examples. 

LASVM also implements strategies to speed up calculations using a stopping criterion that 

avoids solving the optimisation problem to a point of higher accuracy than necessary. 

Searching for informative examples can further increase processing speed when several 

examples are already available (in offline training or when the algorithm can’t follow up the acquisition 

speed). 

LASVM presents active selection rooted in the minimax gradient 
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, that chooses the example localized closest to the current decision frontier (higher value), from a small 

randomly selected group that hasn’t yet been PROCESSED. This step enhances tolerance to noisy data 

since it is executed independently of the point’s label. 

 

 

7. Experiments 
 

Results reported here were obtained from a performance study of several kernel machines on 

biological benchmark data sets. They include parameters such as accuracy, processing time and the 

complexity of the trained models, for binary and multi-class classification tasks. 

To accomplish the study a Matlab application with a user interface has been created, which 

integrates all algorithms used here in a single tool. This first version incorporates functionalities that 

facilitate data manipulation and the analysis of results. 

The algorithms used here were: LIBSVM (version 2.85), the exact incremental algorithm from 

Cauwenberghs and Poggio (C&P), SimpleSVM (version 2.31) and the Relevance Vector Machine 

(version 1.00). Discriminative models were trained under a 1.6 GHz processor PC and Microsoft 

Windows XP running MATLAB 7.2 (R2006a). The incremental algorithm LASVM was also tested, but 

not included in this tool since the original code was not developed for Windows. It was then executed 

under gOS, an operating system that belongs to the Linux family. 

All algorithms were tested on the binary problems, but only LIBSVM and SimpleSVM worked 

on multi-class, since the other machines weren’t prepared for it. The architecture of LIBSVM and 

SimpleSVM also don’t cope with multi-class classification, nevertheless a one-versus-one methodology is 

available in both applications. 

It is important to keep in mind that this is a comparative study where we emphasize the relation 

between the algorithms. Despite indicating processing times, they shell not be seen as inflexible variables, 

since there were several aspects of the computational environment that were not totally controlled. 

 

 
 

Figure 1 – Screenshot of the Matlab tool developed. 
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7.1. Data sets description 
  

All data sets are under public domain, and can be found at UCI repository homepage [31]. 

 Experiments included 3 binary and 2 multiclass classification tasks. Pima Indians Diabetes, 

Wisconsin Breast Cancer and Promoters were used in the first kind of task, and Yeast and Splice in the 

latter. 

 

Table 1 – Brief data sets description 

Data set # Attributes # Instances Type Description 

 

WBC 

 

10 

 

699 

 

Binary 

classification 

Attributes are cell properties used to 

identify between a benign and a malign 

class. 

 

PID 

 

8 

 

768 

 

Binary 

Classification 

Information from several female patients 

with at least 21 years old of Pima Indian 

heritage, used to determine diabetes. 

 

 

Promoters 

 

 

58 

 

 

106 

 

 

Binary 

classification 

A promoter is a region of DNA that 

facilitates the transcription. To check if a 

nucleotide sequence is a promoter, this 

data set was transformed from the original 

string format to numbers using the 

available functions from the Matlab 

bioinformatics toolbox. 

 

 

Yeast 

 

 

8 

 

 

1484 

 

 

Multi-class 

classification 

The problem posed in this dataset is to 

recognize, the localization site of a given 

yeast known some of its properties. Every 

string attribute was transformed to a 

numeric format. 

 

 

 

Splice 

 

 

 

61 

 

 

 

3190 

 

 

 

Multi-class 

classification 

Splice junctions are points on a DNA 

sequence at which ‘superfluous’ 

nucleotides are removed during the 

process of protein creation. The objective 

is to detect the boundaries between exons 

(the parts of the DNA sequence retained 

after splicing) and introns (the parts of the 

DNA sequence that are spliced out), and 

vice-versa. 

 

 

 

7.2. Training Parameters 

 
 Parameters used for training were obtained empirically. They are the ones by which was 

obtained the higher accuracy values for each data set. 

Training used the first 2/3 of the data, and the remaining 1/3 was used for testing. Exceptionally, 

data set Promoters used points with an index multiple of 2 and 3 for training and the remaining for 

testing, in order to place examples from all classes among train and test collections.  

To get more details about the learning process, the number of training points was gradually 

increased. 

 

Table 2 – Classification parameters 

Binary classification 

 Training size Test size Γ C Kernel type 

PID 512 256 0.0000007 90 RBF 

WBC 466 233 0.07 10 RBF 

Promoters 71 35 0.04 5 RBF 

 

Multi-class classification 

 Training size Test size Γ C Kernel type 

Yeast 989 495 0.3 110 RBF 

Splice 2127 1063 0.0009 70 RBF 
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8. Results 
 

Results concerning the accuracy, processing time and model complexity are graphically 

presented for each data set (annex A).  

A consensual result concerns processing time for binary classification: LIBSVM and LASVM 

are far the fastest applications, followed by C&P algorithm, SimpleSVM, and finally the RVM. 

The relation between accuracy values and the number of vectors kept in the discriminative RVM 

model for Diabetes and Promoters contrast to the ones obtained for WBC. In the first two cases 

considerably simpler models than the ones constructed by the other approaches, could obtain similar or 

even higher accuracy results, while for WBC set the RVM got worst accuracy despite using even more 

examples to define the decision hyperplane. 

LASVM and LIBSVM have a similar behaviour for the smaller data sets. However the former is 

demarked since it keeps less SVs as data sets grow, building discriminative models with lower 

complexity. 

The C&P, LASVM and RVM algorithms weren’t used with Yeast and Splice because the 

software packages weren’t prepared for these multi-class data sets. In this case LIBSVM performed better 

than SimpleSVM, achieving the best results for both data sets: The accuracy rates are similar for a shorter 

training time. 

 

 

Table 3a – General results 

 LASVM C&P SimpleSVM 

DATA 

SET 

Accuracy 

(%) 

Time 

(s) 

SVs Accuracy 

(%) 

Time 

(s) 

SVs Accuracy 

(%) 

Time 

(s) 

SVs 

PID 79,7 immediate 256 79,7 1,8 307 80,5 3,6 303 

WBC 99 immediate 47 98,7 0.5 56 98,7 0.4 55 

Promoters 83.3 immediate 70 72,2 0,2 32 83,3 0,3 68 

Yeast - - - - - - 54,6 16,9 1349 

Splice - - - - - - 87.3 327 2107 

 

 

 

Table 3b – General results (cont.) 

 LIBSVM RVM 
DATA 

SET 

Accuracy 

(%) 

Time 

(s) 

SVs Accuracy 

(%) 

Time 

(s) 

RVs 

PID 79,3 immediate 311 76,2 24 14 

WBC 98,7 immediate 55 82 450 78 

Promoters 91,4 immediate 70 97,2 0,8 16 

Yeast 58.5 0,25 672 - - - 

Splice 86 1.8 924 - - - 

 

 

 

9. Conclusion and Future Work 
 

 In this work, several incremental approaches for the SVM were presented and evaluated on five 

biological datasets. Among the used kernel machines, LIBSVM and LASVM have given, in general, the 

best results, confirming the potential of the SMO based techniques. Also, the complexity of a model tends 

to increase as the number of examples provided becomes significantly larger. 

LASVM combines active learning with a decremental technique in order to optimise the 

complexity vs. accuracy trade-off. The positive effect of such approach is expressed in the achieved 

results, where LASVM generates less support vectors than LIBSVM, for the same accuracy. 

In this preliminary analysis, it was also verified that RVMs are slower than the other options 

available. However, considering the fact that there were data sets like promoters and diabetes where it 

was able to create considerably simpler models without significant loss of accuracy or even achieving 

higher values. 

The C&P incremental algorithm and its counterpart SimpleSVM, have shown a similar 

performance. Their processing time is larger than SMO based techniques, but the results concerning to the 

accuracy and number of support vectors were similar. 
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As an overall conclusion, there is still plenty of work to do on incremental algorithms in order to 

exploit all their potential. Future work will be directed toward algorithms similar to LASVM, exploiting 

the combination of feature selection methods and space reduction with incremental learning. Principal 

Component Analysis based techniques, recursive feature selection and active learning should be 

considered. 
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Annex A – Graphical Results 
 

 

 

 
 

 
 

 
 

 

Figure 1 – Results for WBC (left column) and for Diabetes data set (right column). From top to bottom: 

model complexity, accuracy and processing time. 
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Figure 2 – Results for promoters data set: number of SVs by set size (top left), test accuracy (top right) 

and processing time (bottom). 
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Figure 3 – Results for Yeast (left column) and for Splice data set (right column). From top to bottom: 

model complexity, accuracy and processing time. 

 
 


