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Abstract. Protein membership prediction is a fundamental task to retrieve in-
formation for unknown or unidentified sequences. When support vector ma-
chines (SVMs) are associated with the right kernels, this machine learning 
technique can build state-of-the-art classifiers. However, traditional implemen-
tations work in a batch fashion, limiting the application to very large and high 
dimensional data sets, typical in biology. Incremental SVMs introduce an alter-
native to batch algorithms, and a good candidate to solve these problems. In this 
work several experiments are conducted to evaluate the performance of the in-
cremental SVM on remote homology detection using a benchmark data set. The 
main advantages are shown, opening the possibility to further improve the algo-
rithm in order to achieve even better classifiers.  
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1   Introduction 

A traditional issue in bioinformatics is the classification of protein sequences into 
functional and structural groups based on sequence similarity. Despite being relatively 
easy to recognize homologues with high levels of similarity, remote homology detec-
tion is a much harder task. Approaches used for remote homology detection can be 
divided into three main groups: pairwise sequence comparison methods, generative 
models and discriminative classifiers. The most successful methods for remote ho-
mology detection are the discriminative, that combine SVMs [5] with special kernels 
[19, 20, 21, 22, 23]. The SVM is a powerful machine learning technique that com-
bines high accuracy with good generalization, achieving state-of-the-art results. How-
ever, traditional SVM batch implementations present some limitations when faced 
with the high dimensional and large number of examples available in biology. Incre-
mental SVMs can potentially bring the solutions to these issues, by means of their 
ability to add new information to an existing, already trained model. 

In this work, some experiments are performed with a benchmark data set from 
SCOP [6] previously used on remote homology detection in order to evaluate the 
performance of an incremental SVM against the batch algorithm and PSI-BLAST. 
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An overview on incremental SVMs is presented in Section 2. Section 3 presents 
the description of the spectrum, mismatch and profile kernels which have been used, 
and Section 4 presents the experiments and results analysis. Final conclusions and 
reference to future work are given in the last Section. 

2   Incremental Kernel Machines 

Nowadays, the advances in technology allow collecting enormous amounts of data 
and joining it in very large data sets. Computational biology is one of such fields 
where the millions of available examples can also be characterized by very high and 
variable dimensionality. However, because traditional SVMs use all data in a batch 
train, both the models and algorithms complexity are overlapping the computational 
capacities available, limiting the application to this field. Since less information 
usually implies simpler models and lower memory requirements, reducing the num-
ber of train instances and the dimensionality of the data have been both explored 
approaches. By common sense, the easiest way to decrease the processing burden is 
to train only over one smaller set with randomly chosen examples. However the 
probability of excluding important information with this methodology is very high. 
A larger training set also represents an advantage, since the extra information can 
contribute to create more accurate models. Therefore, it is important to analyse 
every individual example, at least briefly. On the other hand, our knowledge in 
proteomics and genomics is constantly changing, taking repositories to suffer con-
siderable modifications in relatively short periods of time, that demand frequent 
time consuming actualisations of the discriminative models. Considering these 
facts, a SVM that builds models step by step in an incremental/decremental fashion 
using a smaller number of instances each time should be a reality in computational 
biology. 

The first incremental method proposed takes under consideration that the SVM 
solution only depends on the support vectors, therefore retraining a model consecu-
tively in new blocks of data and the support vectors obtained from previous training 
sessions will yield the same result as training with all available points at once, be-
cause the support vectors are preserved along the process [7]. The exact formulation 
of incremental SVM learning was presented some years later [8], and brought the 
possibility to decrement or “unlearn” a model. The algorithm was extended to 
leave-one-out procedures, and adapted in a way to minimize the computational cost 
of recalculating a new solution when regularization parameter C and kernel parame-
ters are changed [9]. Nevertheless, this algorithm presents some limitations associ-
ated to the use of all the already seen examples to get the final exact solution. An 
alternative that tries to solve this matter is SimpleSVM [10]. The SimpleSVM algo-
rithm extends Poggio’s principles to the soft-margin case and combines it with 
block training to keep optimality over unconstrained Lagrangian multipliers. Sim-
pleSVM has a good performance on data sets with few support vectors, however for 
large scale problems, Sequential Minimal Optimisation (SMO) is preferred [11]. 
SMO breaks the optimization problem down into two-dimensional sub-problems  
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that may be solved analytically, eliminating the need for a numerical optimization 
algorithm such as conjugate gradient methods, this way shortening the processing 
time and the computational burden. 

It is precisely from SMO that LASVM is derived [12]. This algorithm is an 
online kernel classifier based on the soft-margin SVM, that incrementally builds a 
discriminative model by adding or removing support vectors iteratively, using two 
different points each turn. New support vectors come from a direction search called 
PROCESS that involves at least one non support vector from the current kernel 
expansion, while REPROCESS can eliminate support vectors by changing to zero 
the weight coefficients of one or both the points analysed. In order to incrementally 
build the final discriminative model, each iteration demands storing a set of all the 
potential support vectors, Lagrange coefficients of the kernel expansion and the 
partial derivatives. A significant difference that arises when comparing LASVM to 
SimpleSVM is that the former doesn’t seek the precise solution of the QP problem 
in each step but instead an approximation that improves the dual function. So, a 
finishing step similar to a simplified SMO may be necessary to improve perform-
ance on noisy data sets. 

In fact, real-life problems are dynamic/online rather than static/batch, because in-
formation is prone to change. Some work has been developed around incre-
mental/online classification [13, 14, 15] and regression problems [16, 17, 18], but a 
lot of research is still needed, in particular for biological data analysis.  

3   Kernels for Proteins  

Several kernels have been proposed for protein classification [19, 20, 21, 22, 23, 27]. 
The kernel function aims emphasizing important biological information while con-
verting variable length strings that represent amino acids or nucleotides, into numeric 
fixed size feature vectors. This mapping is mandatory in the sense that the learning 
machine demands feature vectors with a fixed number of attributes and largely affect 
the final accuracy and complexity of the learning machine. 

3.1   The Spectrum Kernel 

The spectrum kernel [20] is a string kernel type that acts over an input space com-
posed of all finite sequences of characters from an alphabet A  with l  elements, and 

maps it to a feature space with kl  dimensions that represent all the possible k-length 
contiguous subsequences that may be contained in a protein. 
The feature map for sequence x is given by: 

( ) ( )( ) kAk xx ∈=Φ ααφ , (1) 

where ( )xαφ  contains the number of times subsequence α  occurs in x . 

Taking into account the definition of kernel, the k-spectrum kernel comes from the 
dot product: 
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( ) ( ) ( )yxyxK kkk ΦΦ= ,,  (2) 

3.2   The Mismatch Kernel 

The mismatch kernel [21] is an extension of the spectrum kernel. It measures se-
quence similarity based on shared occurrences of fixed-length patterns in the data, 
allowing mutations between them. 

A k-length subsequence α of aminoacids can be described in a ( )mk, -

neighborhood ( ) ( )αmkN ,  defined by all the k-length subsequences β  that differ from 

the original α  by at most m  mismatches. 
The entry space uses the feature map: 

( ) ( ) ( )( ) kAmk ∈
=Φ

αβ αφα, , (3) 

where ( )αφβ  contains the number of occurrences and where β belongs to ( ) ( )αmkN , . 

The mismatch kernel is given by: 

( ) ( ) ( ) ( ) ( ) ( )yxyxK mkmkmk ,,, ,, ΦΦ= , (4) 

and is equivalent to the spectrum kernel when no mismatches are allowed ( )0=m . 

3.3   The Profile Kernel 

The profile kernel [23] doesn’t take as input the protein itself but rather profiles 
)(xP  of a sequence x. Profiles are statistically estimated from close homologues 

stored in a large sequence database, and can be defined as: 

( ) ( ){ }N
ii AaapxP 1, =∈= , (5) 

with ip  being the emission probability of aminoacid a  in position i  and 

( )∑ =∈Aa i ap 1  for every position i . Similarly to the mismatch kernel, mutations are 

considered. A significant difference is that here the probability of a mutation to occur 
is measured and only some cases are allowed, considering a score dependent on the 
position of the substring in the protein chain and a given threshold. 

4   Experiments 

Remote homology detection was used to evaluate the performance, structure com-
plexity and processing time of incremental SVM algorithms comparatively to batch 
implementations. The following algorithms were applied: LIBSVM [24] (version 
2.85) as the batch SVM, the incremental algorithm LASVM and PSI-BLAST, the 
most used method by the scientific community. 
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Due to the very high dimensionality of the feature space generated using string  
kernels, these were pre-computed in order to avoid computation problems. This meth-
odology also allows planning computation in a way to avoid calculus redundancy. For 
the implementation, it was necessary to adapt LASVM to accept this kind of data as 
input. 

A 2.4 GHz Intel Core 2 Quad CPU desktop computer with 4 GB RAM was used. 
PSI-BLAST was executed under Microsoft Windows XP, LIBSVM models were 
trained under the same operating system running a MATLAB interface, and LASVM 
was executed under gOS. 

The profiles for the profile kernel were obtained with PSI-BLAST using 2 search 
rounds.  

4.1   Data Set Description 

The algorithms were tested with a SCOP benchmark data set previously used on re-
mote homology detection [22]. The data set has 7329 domains and was divided ac-
cording to 54 families. Remote homology detection is simulated by considering all 
domains for each family as positive test examples and sequences outside the family 
but belonging to the same superfamily as positive train examples. Negative examples 
are from outside the positive sequences fold, and were randomly divided into train 
and test sets in the same ratio as the positive examples. 

To evaluate the quality of the created classifiers receiver operating characteristics 
(ROC) was used. A ROC curve consists in the plot of the true positives rate as a func-
tion of true negatives rate at varying decision thresholds, and expresses the ability of a 
model to correctly rank examples and separate distinct classes. The area under a ROC 
curve (AUC), also known as ROC score, is the most used performance measure ex-
tracted from ROC. A good model has AUC=1, a random classifier is expressed by an 
AUC ≈ 0, 5 and the worst case comes when AUC=0. 

4.2   Results 

The ROC scores (AUC) for the batch SVM, LASVM and PSI-BLAST, are given in 
Table 1. The kernel notation indicates the length of the subsequences taken under 
consideration and the number of mismatches allowed (for mismatch kernel) or the 
threshold value (for profile kernel). 

As expected, the SVM with the profile kernel is the one that achieves better results, 
followed by the mismatch and spectrum kernel. Profile and mismatch kernels create 
models with even better performance than PSI-BLAST, showing its ability to evi-
dence important biological information based on amino acid sequences alone. This 
quality is not an exclusive property of the batch algorithms, since LASVM exhibits an 
identical behaviour, creating models with equal or even superior results for some 
protein families. It was also verified that processing time is similar when training new 
models from the beginning with all data points. 
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The ability of the incremental algorithm to achieve an inferior number of support 
vectors than LIBSVM (as seen in Figure1), when describing the discriminative deci-
sion hyperplane, reveals an important contribution to complexity reduction, making 
this methodology suitable for large scale problems. 

 

Fig. 1. Support vectors for LASVM plotted against LIBSVM for each family model. Results 
obtained for spectrum (3), spectrum (5), mismatch (3, 1), mismatch (5, 1), profile (3, 7.5) and 
profile (5, 7.5) in top left, top right, center left, center right, bottom left and bottom right,  
respectively. 
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Table 1. Mean ROC values for all experiments 

Algorithm Kernel ROC (mean) 
PSI-BLAST - 0.8183 

Spectrum(3) 0.788 
Spectrum(5) 0.720 

Mismatch(3,1) 0.856 
Mismatch(5,1) 0.866 
Profile(3,7.5) 0.89 

 
 

LIBSVM 

Profile(5,7.5) 0.92 

Spectrum(3) 0.788 
Spectrum(5) 0.699 

Mismatch(3,1) 0.855 
Mismatch(5,1) 0.865 
Profile(3,7.5) 0.89 

 
 

LASVM 

Profile(5,7.5) 0.92 

5   Conclusions and Future Work 

This work proposes incremental SVM algorithms for protein remote homology detec-
tion. The presented results show that the incremental formulation, namely LASVM, 
achieves state-of-the-art results for this kind of task, bringing some advantages over 
the batch SVM, which by itself can get superior results to the widely accepted PSI-
BLAST. The incremental SMO based SVM showed proficiency to generate discrimi-
native models as good as or even better than batch LIBSVM, keeping, for the most 
families a reduced number of support vectors. 

These good results and the potential of the approach encourage the application of 
the incremental algorithm with different kernels for online classification tasks, and in 
particular to large biological data sets. 
 
Acknowledgments. This work was supported by FCT – Fundação para a Ciência e a 
Tecnologia, under Project BIOINK – PTDC/EIA/71770/2006. 

References 

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: A basic local alignment 
search tool. J. Mol. Biol. 215, 403–410 (1990) 

2. Smith, T.F., Waterman, M.S.: Identification of common molecular sub- Sequences. J. Mol. 
Biol. 147, 195–197 (1981) 

3. Krogh, A., Brown, M., Mian, I., Sjolander, K., Haussler, D.: Hidden markov models in 
computational biology: Applications to protein modeling. J. Mol. Biol. 235, 1501–1531 
(1994) 

4. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, 
D.J.: Gapped BLAST and PSI-BLAST: A new generation of protein database search pro-
grams. Nucleic Acids Research 25, 3389–3402 (1997) 

5. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998) 



416 L. Morgado and C. Pereira 

6. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: A structural classification 
of proteins database for the investigation of sequences and structure. J. Mol. Biol. 247, 
536–540 (1995) 

7. Syed, N.A., Liu, H., Sung, K.K.: Incremental Learning with Support Vector Machines (1999) 
8. Cauwenberghs, G., Poggio, T.: Incremental and Decremental Support Vector Machine 

Learning. Advances in Neural Information Processing Systems, vol. 13. MIT Press, Cam-
bridge (2001) 

9. Diehl, C.P., Cawenberghs, G.: SVM Incremental Learning, Adaptation and Optimization. 
In: Proceedings of the International Joint Conference on Neural Networks (2003) 

10. Vishwanathan, S.V.N., Smola, A.J., Murty, M.N.: SimpleSVM. In: Proceedings of the 
Twentieth International Conference on Machine Learning, Washington DC (2003) 

11. Platt, J.C.: Sequential Minimal Optimization: A Fast Algorithm for Training Support Vec-
tor Machines. Advances in Kernel Methods – Support Vector Learning. MIT Press, Cam-
bridge (1999) 

12. Bordes, A., Ertekin, S., Weston, J., Bottou, L.: Fast Kernel Classifiers with Online and Ac-
tive Learning. Journal of Machine Learning Research (2005) 

13. Tax, D.M.J., Laskov, P.: Online SVM Learning: From Classification to Data Description 
and Back. Neural Networks for Signal Processing (2003) 

14. Rüping, S.: Incremental Learning with Support Vector Machines. In: Proceedings of the 
2001 IEEE International Conference on Data Mining (2001) 

15. Laskov, P., Gehl, C., Krüger, S., Müller, K.: Incremental Support Vector Learning: Analy-
sis, Implementaton and Applications. The Journal of Machine Learning Research 7, 1909–
1936 (2006) 

16. Martin, M.: On-line Support Vector Machine Regression. In: Proceedings of the 13th 
European Conference on Machine Learning (2002) 

17. Ma, J., Theiler, J., Perkins, S.: Accurate On-line Support Vector Regression. Neural Com-
putation 15, 2683–2703 (2003) 

18. Parrella, F.: Online Support Vector Regression – A thesis presented for the degree of In-
formation Science. Department of Information Science, University of Genoa, Italy (2007) 

19. Jaakkola, T., Diekhans, M., Haussler, D.: Using the Fisher Kernel Method to Detect Re-
mote Protein Homologies. In: Proceedings of the Seventh International Conference on In-
telligent Systems for Molecular Biology (1999) 

20. Leslie, C., Eskin, E., Noble, W.: The spectrum kernel: a string kernel for SVM protein 
classification. In: Pacific Symposium on Biocomputing, vol. 7, pp. 566–575 (2002) 

21. Leslie, C., Eskin, E., Weston, J., Noble, W.: Mismatch string kernels for SVM protein 
classification. Adv. Neural Inf. Process. Syst. 15, 1441–1448 (2002) 

22. Weston, J., Leslie, C., Zhou, D., Elisseeff, A., Noble, W.S.: Semi-Supervised Protein Clas-
sification using Cluster Kernels. In: NIPS, vol. 17 (2003) 

23. Kuang, R., Ie, E., Wang, K., Siddiqi, M., Freund, Y., Leslie, C.: Profile-based string ker-
nels for remote homology detection and motif extraction. In: 3rd International IEEE Com-
puter Society Computational Systems Bioinformatics Conference, Stanford, CA, pp. 152–
160. IEEE Computer Society Press, Los Alamitos (2004) 

24. Chang, C.C., Lin, C.J.: LIBSVM: a Library for Support Vector Machines (2004), 
http://www.csie.ntu.edu.tw/~cjlin/libsvm 

25. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27, 861–874 
(2006) 

26. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine 
learning algorithms. Pattern recognition 30(7), 1145–1159 (1997) 

27. Busuttil, S., Abela, J., Pace, G.J.: Support Vector Machines with Profile-Based Kernels for 
Remote Protein Homology Detection. Genome Informatics 15(2), 191–200 (2004) 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


