Appendix

This document presents some supplementary material to the manuscript submitted to Artificial Intelligence Review, entitled "On the joint-effect of Class Imbalance and Overlap: A Critical Review". **Authors:** Miriam Seoane Santos, Pedro Henriques Abreu, Nathalie Japkowicz, Alberto Fernández, Carlos Soares, Szymon Wilk, and João Santos.

A Lessons learned (supporting information)

Table A.1: Characterisation of the behaviour of classifiers from related work. In this table are included the typical and atypical domains from García et al. [2,4,5,3] and the domains by Prati et al. [8] and Denil and Trappenberg [1].

Typical I	Domains: Squares, $IR = 4:1$		Atypical	Domains: Squares, $IR = 4:1$	
Classifier	Sensitivity	Specificity	Classifier	Sensitivity	Specificity
KNN [2,4] [5,3]	Sensitivity of 50%, 30% and 20% for higher percentages of class overlap (60%, 80% and 100% re- spectively) for 1NN. Faster dete- rioration was reported for higher values of k ($k = 3, k = 9$) [3].	Specificity decreases (100% to 80%) as overlap increases (from 0% to 100%) for 1NN. Higher values of k seem to benefit the majority class: specificity around 100% to 90% for 0% to 100% over- lap for $k = 3$ and stable at 100% for $k = 9$ [3].	KNN [4,5,3]	Sensitivity increases as the minority class gets denser (40% to 80%). Increasing the value ok k benefits the minority class (range of 40% to 90% for $k = 3$ and 40% to 100% for $k = 9$) [3].	Specificity stable around 80%- 95% as the minority gets denser. Specificity is always superior to Sensitivity. Increasing the value of k does not seem to impact the results [3].
MLP [4,5,3]	Sensitivity around 40%, 20% and 0% for higher percentages of class overlap (60%, 80% and 100% re- spectively)	Specificity remains stable (near 100%) as overlap increases.	MLP [4,5,3]	Sensitivity increases as the mi- nority class gets denser (40% to 100%). Sensitivity and specificity start apart for the balanced con- figuration (40% and 80% respec- tively) and go hand-in-hand as the minority class becomes denser (80% to 100%).	Specificity stable around 80%- 95% as the minority gets denser. Shows an inflection curve where the specificity decreases for the first configuration where classes interchange roles (from the bal- anced configuration [75-100] to the [80-100] configuration), be- fore starting to increase gradu- ally.
C4.5 [4,5,3]	Sensitivity around 40%, 20% and 0% for higher percentages of class overlap (60%, 80% and 100% re- spectively)	Specificity remains stable (near 100%) as overlap increases.	C4.5 [4,5,3]	Sensitivity increases as the minority class gets denser (40% to 100%). Sensitivity and specificity are considerably different for the balanced configuration (40% / 80%), yet sensitivity rapidly increases to 100% in the following configurations, while specificity increases gradually.	Specificity stable around 80%- 95% as the minority gets denser. Shows an inflection curve where the specificity decreases for the first configuration where classes interchange roles (from the bal- anced configuration [75-100] to the [80-100] configuration), be- fore starting to increase gradu- ally.
RBF [4,5,3]	Sensitivity around 40%, 20% and 0% for higher percentages of class overlap (60%, 80% and 100% re- spectively)	Specificity remains stable (near 100%) as overlap increases. Nev- ertheless, a slight decrease is no- ticeable for intermediate levels of overlap (around 2%).	RBF [4,5,3]	Sensitivity increases as the mi- nority class gets denser (40% to 100%) but only surpasses speci- ficity for the final configuration, [95-100], and increases slowly.	Specificity stable around 80%- 95% as the minority gets denser.
SVM [5]	Sensitivity of 50% for 40% over- lap and 0% for higher overlap lev- els (from 60% to 100%).	Specificity remains stable (near 100%) as overlap increases.	SVM [5]	Sensitivity increases as the mi- nority class gets denser, although very slowly: 0% for the [75-100] (balanced) and [80-100] configu- rations, and 20% for [85-100]. For the final two configurations, sen- sitivity rises to 90% and 100% .	Specificity decreases as the mi- nority class gets denser, although slightly (100% to 90%). To be continued on the next page

Table A.1: Continu	ed from previous	page.

Typical Domains: Squares, IR 4:1			Atypical Domains: Squares, IR = 4:1			
Classifier	Sensitivity	Specificity	Classifier	Sensitivity	Specificity	
NB [4,5,3]	Sensitivity around 40%, 20% and 0% for higher percentages of class overlap (60%, 80% and 100% re- spectively). A fast decrease is Specificity noted for class overlap over 60%: 100%) as sensitivity below 20% was re- ported for 80% overlap citeGar- cia2007b.	y remains stable (near overlap increases.	NB [4,5,3]	Sensitivity increases as the mi- nority class gets denser (80% to 100%). For a balanced con- figuration, both classes present Spec similar recognition rates (around 95% 80%) and as the minority class gets denser, sensitivity assumes higher (although close) values than specificity.	cificity stable around 80%- as the minority gets denser.	
Atypical Domains: Concentric Circles, $IR = 50:1$			Other Domains			
KNN [3] RBF [3]	Sensitivity results are similar to standard atypical situations.		C4.5 [8]	For 1 and 3 SD, C4.5 achieved an AUC 91% and 99.9% (IR = 4.1, 5D) 87% and 99.6% (IR = 9.1, 5D)	C of:	
C4.5 [3]	Sensitivity results are similar to standard atypical situations, al- Specificity though the performance for bal- increasing anced configurations is lower in seem to in this domain (around 10%).	y stable on 100%. For K g the value of k does not npact the results.	NN, SVM [1]	SVM is capable of finding parsimoniou imbalance, whereas class overlap sever When domains are both imbalanced at a breaking point for $\alpha = 0.6$ (IR = 1.5	is models in the presence of class ely increases model complexity. and overlapped, SVM revealed b) and $\mu = 0.78$.	
MLP [3]	Sensitivity of 0% for all configu- rations.					
NB [3]	Sensitivity of 100% for all config- urations.					

Subclus Domains		Paw Domains			
Classifier	Sensitivity	G-mean	Classifier	Sensitivity	G-mean
MODLEM [7]	Sensitivity of 88%, 56%, 34% and 20% for 0%, 30%, 50% and 70% of border- line minority examples (IR = 7:1 and 5 subregions).	G-mean of 94%, 73%, 56% and 41% for 0%, 30%, 50% and 70% of borderline minority examples (IR = 7:1 and 5 subregions).	MODLEM [7]	Sensitivity of 83% , 61% , 45% and 29% for 0% , 30% , 50% and 70% of borderline minority ex- amples (IR = 7:1 and 3 subre- gions).	G-mean of 90%, 76%, 66% and 51% for 0% , 30%, 50% and 70% of borderline minority examples (IR = 7:1 and 3 subregions).
C4.5 [7,9]	Sensitivity of 95%, 45%, 17% and 0% for 0%, 30%, 50% and 70% of border- line minority examples (IR = 7:1 and 5 subregions) [7].	G-mean of 97%, 65%, 35% and 0% for 0%, 30%, 50% and 70% of borderline minority examples (IR = 7:1 and 5 sub- regions) [7].	C4.5 [7]	Sensitivity of 52% , 26% , 18% and 0.6% for 0% , 30% , 50% and 70% of borderline minor- ity examples (C4.5, IR = 7:1 and 3 subregions) [7].	G-mean of 67%, 33%, 32% and 1.5% for 0%, 30%, 50% and 70% of borderline minority examples (C4.5, IR = 7:1 and 3 subregions) [7].
	Sensitivity results for 0%, 10% and 20 96%, 91% and 85% (IR = 5:1 and 3 su 94%, 90% and 75% (IR =) 1 and 3 su 96%, 87% and 76% (IR = 5:1 and 5 su 90%, 81% and 66% (IR = 9:1 and 5 su	% of borderline minority examples [9]: bregions) bregions) bregions) bregions)	C4.5-P [10 C4.5-U [10	Sensitivity of 90% and 91% (C4.5-P) and 89% and 90% (C4.5-U) for 0% and 30% of borderline minority examples (IR = 7:1, 3 subregions, 3D) [10].	G-mean of 94% and 95% $(C4.5-P)$ and 94% $(C4.5-U)$ for 0% and 30% of borderline minority examples (IR = 7:1, 3 subregions, 3D) [10].
CART [6]	Sensitivity results for CART with 0% $^{\circ}$ 98% and 90% (IR = 4:1 and 5 subregi 93% and 73% (IR = 10:1 and 5 subregi 97% and 97% (IR = 4:1 and 5 subregi 96% and 89% (IR = 10:1 and 5 subregi	and 50% of borderline minority examples: ons) ions, 5D) ions, 5D)	PART-P [1 PART-U [2	$\begin{array}{llllllllllllllllllllllllllllllllllll$	G-mean of 92% and 93% (PART-P) and 94% and 93% (PART-U) for 0% and 30% of borderline minority examples (IR = 7:1, 3 subregions, 3D).
SVM [6]	For 0% and 50% of borderline minority Linear kernel: 48% and 40% (IR = 4:1 Linear kernel: 33% and 12% (IR = 10: RBF kernel: 90% and 85% (IR = 4:1 a RBF kernel: 69% and 54% (IR = 10:1 a Linear kernel: 48% and 47% (IR = 4:1 Linear kernel: 41% and 35% (IR = 4:1 RBF kernel: 96% and 94% (IR = 4:1 a RBF kernel: 84% and 75% (IR = 10:1	<pre>v examples SVM achieved a sensitivity of: and 5 subregions) 1 and 5 subregions) nd 5 subregions) and 5 subregions, 5D) 1 and 5 subregions, 5D) and 5 subregions, 5D) and 5 subregions, 5D)</pre>	SVM [10]	Sensitivity of 98% and 99% for 0% and 30% borderline minority examples (IR = 7:1, 3 subregions, 3D).	G-mean of 99% for 0% and 30% borderline minority exam- ples (IR = 7:1, 3 subregions, 3D).
KNN [6]	For 0% and 50% of borderline minority 85% and 66% (IR = 4:1 and 5 subregio 65% and 48% (IR = 10:1 and 5 subregi 99% and 97% (IR = 4:1 and 5 subregi 83% and 78% (IR = 10:1 and 5 subregi	v examples KNN achieved a sensitivity of: ons) ions, 5D) ions, 5D)	KNN [10]	Sensitivity of 95% for 0% and 30% borderline minority examples (IR = 7:1, 3 subregions, 3D). Increasing the value of k seems to improve sensitivity results.	G-mean of 97% and 96% for 0% and 30% borderline minor- ity examples (IR = 7:1, 3 sub- regions, 3D). Increasing the value of k seems to improve G- mean results.
NB [6]	For 0% and 50% of borderline minority 53% and 46% (IR = 4:1 and 5 subregio 0% and 0% (IR = 10:1 and 5 subregio 100% and 100% (IR = 4:1 and 5 subreg 96% and 93% (IR = 10:1 and 5 subreg	v examples NB achieved a sensitivity of: ons) ¹⁸ (gions, 5D) ions 5D)	NB [10]	Sensitivity of 87% and 88% for 0% and 30% borderline minority examples (IR = 7:1, 3 subregions, 3D).	G-mean of 92% for 0% and 30% borderline minority exam- ples (IR = 7:1, 3 subregions, 3D).

Table A.2: Characterisation of the behaviour of classifiers from related work (*subclus* and *paw* domains).

To be continued on the next page...

Subclus Domains		Paw Dom		ains	
Classifier	Sensitivity	G-mean	Classifier	Sensitivity	G-mean
MLP [6]	For 0% and 50% of borderline minority e: 80% and 0% (IR = 4:1 and 5 subregions) 81% and 57% (IR = 10:1 and 5 subregion 89% and 83% (IR = 4:1 and 5 subregions 77% and 69% (IR = 10:1 and 5 subregion	xamples MLP achieved a sensitivity of: (s) (s, 5D) (s, 5D)	RBF [10]	Sensitivity of 95% and 94% for 0% and 30% borderline minor- ity examples (IR = $7:1, 3$ sub- regions, 3D).	G-mean of 97% and 96% for 0% and 30% borderline minority examples (IR = 7:1, 3 subregions, 3D).
FLD [6]	For 0% and 50% of borderline minority e: 0% and 0% (IR = 4:1 and 5 subregions) 0% and 0% (IR = 10:1 and 5 subregions, 5 0% and 0% (IR = 10:1 and 5 subregions, 5 0% and 0% (IR = 10:1 and 5 subregions,	xamples FLD achieved a sensitivity of: 5D) 5D)			

Table A.2: Continued from previous page.

Clover/Flower Domains			Clover/Flower Domains		
Classifier	Sensitivity	G-mean	Classifier	Sensitivity	G-mean
KNN [10,6]	Sensitivity of 98% for 0% and 30% borderline minority examples (1NN IR = 7:1, 5 subregions, 3D). Increasing the value of k seems to provide higher sensitivity results [10].	6 G-mean of 98% for 0% and 30% bor- , derline minority examples (1NN, IR = g 7:1, 5 subregions, 3D). Increasing the r value of k seems to improve G-mean results [10].	C4.5 [7]	Sensitivity of 43%, 13%, 5% and 0.8% for 0%, 30%, 50% and 70% of borderline minor- ity examples (C4.5, IR = 7:1 and 5 subregions) [7].	G-mean of 64%, 26%, 11% and 2% for 0%, 30%, 50% and 70% of borderline minority examples (C4.5, IR = 7:1 and 5 subregions) [7].
	Sensitivity results for 0% and 50% of 91% and 79% (IR = 4:1 and 5 subreg 66% and 49% (IR = 10:1 and 5 subre 100% and 100% (IR = 4:1 and 5 subr 100% and 99% (IR = 10:1 and 5 subr	borderline minority examples [6]: ions) gions) egions, 5D) egions, 5D)	C4.5-P [10] C4.5-U [10]	Sensitivity of 93% and 94% (C4.5-P) and 90% and 91% (C4.5-U) for 0% and 30% of borderline minority examples (IR = 7:1, 5 subregions, 3D [10].	G-mean of 96% (C4.5-P) and 94% and 95% (C4.5-U) for 0% and 30% of borderline minor- ity examples (IR = 7:1, 5 sub- regions, 3D [10].
FLD [6]	For 0% and 50% of borderline minori 0% and 0% (IR = 4:1 and 5 subregion 0% and 0% (IR = 10:1 and 5 subregio 0% and 0% (IR = 4:1 and 5 subregion 0% and 0% (IR = 10:1 and 5 subregion 0% and 0% and 0% (IR = 10:1 and 5 subregion 0% and 0% an	ty examples FLD achieved a sensitivity of: as) ons) ss, 5D) ons, 5D)	MLP [6]	For 0% and 50% of borderline a sensitivity of: 93% and 91% (IR = 4:1 and 5 79% and 74% (IR = 10:1 and 100% and 99% (IR = 4:1 and 99% and 99% (IR = 10:1 and 90% and 99% (IR = 10:1 and 90% and 90% and 90% (IR = 10:1 and 90% and 90% and 90% (IR = 10:1 and 90% and 90\% and	minority examples MLP obtained subregions) 5 subregions, 55 5 subregions, 5D) 5 subregions, 5D)
CART [6]	Sensitivity results for 0% and 50% of 78% and 73% (IR = 4:1 and 5 subreg 66% and 36% (IR = 10:1 and 5 subreg 98% and 98% (IR = 4:1 and 5 subreg 94% and 96% (IR = 10:1 and 5 subreg 94% and 96% (IR = 10:1 and 5 subreg 94% and 96% (IR = 10:1 and 5 subreg 94% and 96% (IR = 10:1 and 5 subreg 94% and 96% (IR = 10:1 and 5 subreg 94% and 96% (IR = 10:1 and 5 subreg 94% and 96% (IR = 10:1 and 5 subreg 94% and 96% (IR = 10:1 and 5 subreg 94% and 96% (IR = 10:1 and 5 subreg 94% and 96% (IR = 10:1 and 5 subreg 94% and 96% (IR = 10:1 and 5 subreg 94% and 96% (IR = 10:1 and 5 subreg 94% and 96% (IR = 10:1 and 5 subreg 94% and 96% (IR = 10:1 and 5 subreg 94% and 96% (IR = 10:1 and 5 subreg 94% and 96% (IR = 10:1 and 5 subreg 94% and 96% (IR = 10:1 and 5 subreg 94\% and 96\% (IR = 10:1 and 5 subreg 94\% and 96\% (IR = 10:1 and 5 subreg 94\% and 96\% (IR = 10:1 and 5 subreg 94\% and 96\% (IR = 10:1 and 5 subreg 94\% and 96\% (IR = 10:1 and 5 subreg 94\% and 96\% (IR = 10:1 and 5 subreg 94\% and 96\% (IR = 10:1 and 5 subreg 94\% and 96\% (IR = 10:1 and 5 subreg 94\% and 96\% (IR = 10:1 and 5 subreg 94\% and 96\% (IR = 10:1 and 5 subreg 94\% and 96\% (IR = 10:1 and 5 subreg 94\% and 96\% (IR = 10:1 and 5 subreg 94\% and 96\% (IR = 10:1 and 5 subreg 94\% and 96\% (IR = 10:1 and 5 subreg 94\% and 96\% (IR = 10:1 and 5 subreg 94\% and 96\% (IR = 10:1 and 5 subreg 94\% and 96\% (IR = 10:1 and 5 subreg 94\% and 96\% a	borderline minority examples: ions) gions) jons, 5D) gions, 5D)	RBF [10]	Sensitivity of 93% and 98% for 0% and 30% borderline minority examples (IR = 7:1, 5 subregions, 3D).	G-mean of 96% and 99% for 0% and 30% borderline minor- ity examples (IR = 7:1, 5 sub- regions, 3D).
PART-P [10 PART-U [10	Sensitivity of 92% (PART-P) and 90% (PART-U) for 0% and 30% borderline minority examples (IR = 7:1, 5 subregions, 3D).	 6 G-mean of 95% (PART-P) and 94% 9 (PART-U) for 0% and 30% borderline - minority examples (IR = 7:1, 5 subregions, 3D). 	MODLEM [Sensitivity of 57% , 43% , 28% , and 21% for 0% , 30% , 50% and 70% of borderline minority ex- amples (IR = 7:1 and 5 subre- gions).	G-mean of 74%, 64% , 51% and 42% for 0%, 30% , 50% and 70% of borderline minority examples (IR = 7:1 and 5 subregions).

 $\label{eq:alpha} {\it Table A.3: Characterisation of the behaviour of classifiers from related work ({\it clover/flower domains}).$

To be continued on the next page...

Clover/Flower Domains			Clover/Flov		
Classifier	Sensitivity	G-mean	Classifier	Sensitivity	G-mean
NB [10,6]	Sensitivity of 99% for 0% and 30% borderline minority examples (IR = 7:1, 5 subregions, 3D) [10].	G-mean of 98% for 0% and 30% bor- derline minority examples (IR = 7:1, 5 subregions, 3D) [10].	SVM [10,6]	Sensitivity of 100% and 99% for 0% and 30% borderline mi- nority examples (IR = 7:1, 5 subregions, 3D) [10].	6 G-mean of 100% and 99% for - 0% and 30% borderline minor- 5 ity examples (IR = 7:1, 5 sub- regions, 3D) [10].
	Sensitivity results for 0% and 50% of b 23% and 18% (IR = 4:1 and 5 subregio 0% and 0% (IR = 10:1 and 5 subregion 100% and 100% (IR = 4:1 and 5 subregion 100% and 100% (IR = 10:1 and 5 subregion)	orderline minority examples [6]: ns) s) gions, 5D) gions, 5D)		Sensitivity results for 0% and minority examples [6]: Linear kernel: 47% and 31% (Linear kernel: 46% and 40% (RBF kernel: 95% and 92% (IF Linear kernel: 38% and 66% (IF Linear kernel: 36% and 12% (RBF kernel: 100% and 99% (I RBF kernel: 100% and 90% (I	50% of borderline IR = 4:1 and 5 subregions) IR = 10:1 and 5 subregions) t = 4:1 and 5 subregions) t =10:1 and 5 subregions, 5D) IR = 10:1 and 5 subregions, 5D) R = 4:1 and 5 subregions, 5D) IR = 10:1 and 5 subregions, 5D)

Table A.3: Continued from previous page.

References

- Denil, M., Trappenberg, T.: Overlap versus imbalance. In: Canadian Conference on Artificial Intelligence. pp. 220–231. Springer (2010)
- García, V., Alejo, R., Sánchez, J., Sotoca, J., Mollineda, R.: Combined effects of class imbalance and class overlap on instance-based classification. In: International Conference on Intelligent Data Engineering and Automated Learning. pp. 371–378. Springer (2006)
- García, V., Mollineda, R., Sánchez, J.: On the k-nn performance in a challenging scenario of imbalance and overlapping. Pattern Analysis and Applications 11(3-4), 269–280 (2008)
- García, V., Mollineda, R., Sánchez, J., Alejo, R., Sotoca, J.: When overlapping unexpectedly alters the class imbalance effects. In: Iberian Conference on Pattern Recognition and Image Analysis. pp. 499–506. Springer (2007)
- García, V., Sánchez, J., Mollineda, R.: An empirical study of the behavior of classifiers on imbalanced and overlapped data sets. In: Iberoamerican Congress on Pattern Recognition. pp. 397–406. Springer (2007)
- Mercier, M., Santos, M., Abreu, P., Soares, C., Soares, J., Santos, J.: Analysing the footprint of classifiers in overlapped and imbalanced contexts. In: International Symposium on Intelligent Data Analysis. pp. 200–212. Springer (2018)
- Napierała, K., Stefanowski, J., Wilk, S.: Learning from imbalanced data in presence of noisy and borderline examples. In: International Conference on Rough Sets and Current Trends in Computing. pp. 158–167. Springer (2010)
- Prati, R., G., B., Monard, M.: Class imbalances versus class overlapping: an analysis of a learning system behavior. In: Mexican international conference on artificial intelligence. pp. 312–321. Springer (2004)
- Stefanowski, J.: Overlapping, rare examples and class decomposition in learning classifiers from imbalanced data. In: Emerging paradigms in machine learning, pp. 277–306. Springer (2013)
- Wojciechowski, S., Wilk, S.: Difficulty factors and preprocessing in imbalanced data sets: an experimental study on artificial data. Foundations of Computing and Decision Sciences 42(2), 149–176 (2017)